Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nummularine-M

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6079 KB  
Article
Bioactive Cyclopeptide Alkaloids and Ceanothane Triterpenoids from Ziziphus mauritiana Roots: Antiplasmodial Activity, UHPLC-MS/MS Molecular Networking, ADMET Profiling, and Target Prediction
by Sylvestre Saidou Tsila, Mc Jesus Kinyok, Joseph Eric Mbasso Tameko, Bel Youssouf G. Mountessou, Kevine Johanne Jumeta Dongmo, Jean Koffi Garba, Noella Molisa Efange, Lawrence Ayong, Yannick Stéphane Fotsing Fongang, Jean Jules Kezetas Bankeu, Norbert Sewald and Bruno Ndjakou Lenta
Molecules 2025, 30(14), 2958; https://doi.org/10.3390/molecules30142958 - 14 Jul 2025
Viewed by 1331
Abstract
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, [...] Read more.
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, along with its derived fractions, demonstrated potent in vitro activity against the chloroquine-sensitive Plasmodium falciparum strain 3D7 (Pf3D7), with the ethyl acetate-soluble (IC50 = 11.35 µg/mL) and alkaloid-rich (IC50 = 4.75 µg/mL) fractions showing particularly strong inhibition. UHPLC-DAD-ESI-QTOF-MS/MS-based molecular networking enabled the identification of thirty-two secondary metabolites (132), comprising twenty-five cyclopeptide alkaloids (CPAs), five of which had not yet been described (11, 20, 22, 23, 25), and seven known triterpenoids. Bioactivity-guided isolation yielded thirteen purified compounds (5, 6, 14, 2630, 3236), with betulinic acid (30; IC50 = 19.0 µM) and zizyberenalic acid (32; IC50 = 20.45 µM) exhibiting the most potent antiplasmodial effects. Computational ADMET analysis identified mauritine F (4), hemisine A (10), and nummularine R (21) as particularly promising lead compounds, demonstrating favourable pharmacokinetic properties, low toxicity profiles, and predicted activity against both family A G protein-coupled receptors and evolutionarily distinct Plasmodium protein kinases. Quantitative analysis revealed exceptionally high concentrations of key bioactive constituents, notably zizyberenalic acid (24.3 mg/g) in the root extracts. These findings provide robust scientific validation for the traditional use of Z. mauritiana in malaria treatment while identifying specific cyclopeptide alkaloids and triterpenoids as valuable scaffolds for antimalarial drug development. The study highlights the effectiveness of combining advanced metabolomics, bioassay-guided fractionation, and computational pharmacology in natural product-based drug discovery against resistant malaria strains. Full article
Show Figures

Figure 1

24 pages, 6976 KB  
Review
Ziziphus nummularia: A Comprehensive Review of Its Phytochemical Constituents and Pharmacological Properties
by Joelle Mesmar, Rola Abdallah, Adnan Badran, Marc Maresca, Abdullah Shaito and Elias Baydoun
Molecules 2022, 27(13), 4240; https://doi.org/10.3390/molecules27134240 - 30 Jun 2022
Cited by 33 | Viewed by 7594
Abstract
Ziziphus nummularia, a small bush of the Rhamnaceae family, has been widely used in traditional folk medicine, is rich in bioactive molecules, and has many reported pharmacological and therapeutic properties. Objective: To gather the current knowledge related to the medicinal characteristics [...] Read more.
Ziziphus nummularia, a small bush of the Rhamnaceae family, has been widely used in traditional folk medicine, is rich in bioactive molecules, and has many reported pharmacological and therapeutic properties. Objective: To gather the current knowledge related to the medicinal characteristics of Z. nummularia. Specifically, its phytochemical contents and pharmacological activities in the treatment of various diseases such as cancer, diabetes, and cardiovascular diseases, are discussed. Methods: Major scientific literature databases, including PubMed, Scopus, ScienceDirect, SciFinder, Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, Henriette’s Herbal Homepage, Dr. Duke’s Phytochemical and Ethnobotanical Databases, were searched to retrieve articles related to the review subject. General web searches using Google and Google scholar were also utilized. The search period covered articles published between 1980 and the end of October 2021.The search used the keywords ‘Ziziphus nummularia’, AND (‘phytochemical content’, ‘pharmacological properties, or activities, or effects, or roles’, ‘anti-inflammatory’, ‘anti-drought’, ‘anti-thermal’, ‘anthelmintic’, ‘antidiabetic’,’ anticancer’, ‘anticholinesterase’, ‘antimicrobial’, ‘sedative’, ‘antipyretic’, ‘analgesic’, or ‘gastrointestinal’). Results: This plant is rich in characteristic alkaloids, especially cyclopeptide alkaloids such as nummularine-M. Other phytochemicals, including flavonoids, saponins, glycosides, tannins, and phenolic compounds, are also present. These phytochemicals are responsible for the reported pharmacological properties of Z. nummularia, including anti-inflammatory, antioxidant, antimicrobial, anthelmintic, antidiabetic, anticancer, analgesic, and gastrointestinal activities. In addition, Z. nummularia has anti-drought and anti-thermal characteristics. Conclusion: Research into the phytochemical and pharmacological properties of Z. nummularia has demonstrated that this plant is a rich source of novel bioactive compounds. So far, Z. nummularia has shown a varied pharmacological profile (antioxidant, anticancer, anti-inflammatory, and cardioprotective), warranting further research to uncover the therapeutic potential of the bioactives of this plant. Taken together, Z. nummularia may represent a new potential target for the discovery of new drug leads. Full article
Show Figures

Figure 1

17 pages, 1634 KB  
Article
Alterations of the Muscular Fatty Acid Composition and Serum Metabolome in Bama Xiang Mini-Pigs Exposed to Dietary Beta-Hydroxy Beta-Methyl Butyrate
by Changbing Zheng, Bo Song, Qiuping Guo, Jie Zheng, Fengna Li, Yehui Duan and Can Peng
Animals 2021, 11(5), 1190; https://doi.org/10.3390/ani11051190 - 21 Apr 2021
Cited by 18 | Viewed by 3671
Abstract
This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, [...] Read more.
This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, or 1.28% HMB for 60 days. Throughout the experiments, they had free access to clean drinking water and diets. Data of this study were analyzed by one-way ANOVA using the SAS 8.2 software package, followed by a Tukey’s studentized range test to explore treatment effects. The results showed that compared to the control, 0.13% HMB decreased the intramuscular fat (IMF) content and increased polyunsaturated fatty acids (PUFAs) in Longissimus thoracis muscle (LTM), and increased the n3 PUFAs in soleus muscles (SM, p < 0.05). Moreover, HMB supplementation led to alterations in the mRNA expression of genes related to lipid metabolism. Serum metabolome profiling showed that in both LTM and SM of Bama Xiang mini-pigs, N-Methyl-l-glutamate was positively correlated with SFA and nummularine A was negatively correlated with C18:3n3 PUFA (p < 0.05). Therefore, N-Methyl-l-glutamate and nummularine A might be potential biomarkers of the HMB-supplemented group. These results suggested that dietary HMB supplementation could decrease the IMF content and increase n3 PUFAs as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of pigs. Full article
Show Figures

Figure 1

Back to TopTop