Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nucleus pulposus progenitor cells (NPPC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8080 KiB  
Article
Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters
by Yuto Otani, Jordy Schol, Daisuke Sakai, Yoshihiko Nakamura, Kosuke Sako, Takayuki Warita, Shota Tamagawa, Luca Ambrosio, Daiki Munesada, Shota Ogasawara, Erika Matsushita, Asami Kawachi, Mitsuru Naiki, Masato Sato and Masahiko Watanabe
Int. J. Mol. Sci. 2024, 25(15), 8335; https://doi.org/10.3390/ijms25158335 - 30 Jul 2024
Cited by 3 | Viewed by 2477
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 [...] Read more.
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability. Full article
Show Figures

Figure 1

3 pages, 171 KiB  
Editorial
New Frontiers towards Regeneration of the Intervertebral Disc: On Progenitor Cells, Growth Factors and Biomaterials
by Benjamin Gantenbein
Appl. Sci. 2021, 11(24), 11913; https://doi.org/10.3390/app112411913 - 15 Dec 2021
Viewed by 2161
Abstract
This Special Issue on intervertebral disc (IVD) regeneration focuses on novel advances in understanding the cell sources and culture conditions of various cell types, i.e., progenitor and IVD cells. The issue consists of seven articles that provide a comprehensive overview of recently applied [...] Read more.
This Special Issue on intervertebral disc (IVD) regeneration focuses on novel advances in understanding the cell sources and culture conditions of various cell types, i.e., progenitor and IVD cells. The issue consists of seven articles that provide a comprehensive overview of recently applied research insights: (1) into how IVD herniation can be provoked in a controlled in vitro biomechanical testing set-up, (2) how cells can be used for IVD repair, (3) the physiological conditions of IVD cells and (4) how hyaluronic acid could be used for IVD repair, and (5) how nucleus pulposus progenitor cells (NPPCs) and mesenchymal stromal cells (MSCs) shall be cultured and expanded towards a possible cell therapy. Full article
(This article belongs to the Special Issue Intervertebral Disc Regeneration)
18 pages, 2253 KiB  
Article
Influence of Angiopoietin Treatment with Hypoxia and Normoxia on Human Intervertebral Disc Progenitor Cell’s Proliferation, Metabolic Activity, and Phenotype
by Muriel C. Bischof, Sonja Häckel, Andrea Oberli, Andreas S. Croft, Katharina A. C. Oswald, Christoph E. Albers, Benjamin Gantenbein and Julien Guerrero
Appl. Sci. 2021, 11(15), 7144; https://doi.org/10.3390/app11157144 - 2 Aug 2021
Cited by 5 | Viewed by 2882
Abstract
Increasing evidence implicates intervertebral disc (IVD) degeneration as a major contributor to low back pain. In addition to a series of pathogenic processes, degenerated IVDs become vascularized in contrast to healthy IVDs. In this context, angiopoietin (Ang) plays a crucial role and is [...] Read more.
Increasing evidence implicates intervertebral disc (IVD) degeneration as a major contributor to low back pain. In addition to a series of pathogenic processes, degenerated IVDs become vascularized in contrast to healthy IVDs. In this context, angiopoietin (Ang) plays a crucial role and is involved in cytokine recruitment, and anabolic and catabolic reactions within the extracellular matrix (ECM). Over the last decade, a progenitor cell population has been described in the nucleus pulposus (NP) of the IVD to be positive for the Tie2 marker (also known as Ang-1 receptor). In this study, we investigated the influence of Ang-1 and Ang-2 on human NP cell (Tie2+, Tie2 or mixed) populations isolated from trauma patients during 7 days in normoxia (21% O2) or hypoxia (≤5% O2). At the end of the process, the proliferation and metabolic activity of the NP cells were analyzed. Additionally, the relative gene expression of NP-related markers was evaluated. NP cells showed a higher proliferation depending on the Ang treatment. Moreover, the study revealed higher NP cell metabolism when cultured in hypoxia. Additionally, the relative gene expression followed, with an increase linked to the oxygen level and Ang concentration. Our study comparing different NP cell populations may be the start of new approaches for the treatment of IVD degeneration. Full article
(This article belongs to the Special Issue Intervertebral Disc Regeneration II)
Show Figures

Graphical abstract

15 pages, 2463 KiB  
Article
Effect of Whole Tissue Culture and Basic Fibroblast Growth Factor on Maintenance of Tie2 Molecule Expression in Human Nucleus Pulposus Cells
by Kosuke Sako, Daisuke Sakai, Yoshihiko Nakamura, Jordy Schol, Erika Matsushita, Takayuki Warita, Natsumi Horikita, Masato Sato and Masahiko Watanabe
Int. J. Mol. Sci. 2021, 22(9), 4723; https://doi.org/10.3390/ijms22094723 - 29 Apr 2021
Cited by 19 | Viewed by 3401
Abstract
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation [...] Read more.
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation to support and enhance NPPC and Tie2 expression. We also examined the role of PI3K/Akt and MEK/ERK pathways in FGF2 and cFGF-induced Tie2 expression. Young herniating nucleus pulposus tissue was used. We compared WTC and standard primary cell culture, with or without 10 ng/mL FGF2. PI3K/Akt and MEK/ERK signaling pathways were examined through western blotting. Using WTC and primary cell culture, Tie2 positivity rates were 7.0 ± 2.6% and 1.9 ± 0.3% (p = 0.004), respectively. Addition of FGF2 in WTC increased Tie2 positivity rates to 14.2 ± 5.4% (p = 0.01). FGF2-stimulated expression of Tie2 was reduced 3-fold with the addition of the MEK inhibitor PD98059 (p = 0.01). However, the addition of 1 μM Akt inhibitor, 124015-1MGCN, only reduced small Tie2 expression (p = 0.42). cFGF similarly increased the Tie2 expression, but did not result in significant phosphorylation in both the MEK/ERK and PI3K/Akt pathways. WTC with FGF2 addition significantly increased Tie2 maintenance of human NPPC. Moreover, FGF2 supports Tie2 expression via MEK/ERK and PI3K/Akt signals. These findings offer promising tools and insights for the development of NPPC-based therapeutics. Full article
(This article belongs to the Special Issue Regeneration for Spinal Diseases)
Show Figures

Figure 1

13 pages, 1597 KiB  
Article
Towards Tissue-Specific Stem Cell Therapy for the Intervertebral Disc: PPARδ Agonist Increases the Yield of Human Nucleus Pulposus Progenitor Cells in Expansion
by Xingshuo Zhang, Julien Guerrero, Andreas S. Croft, Katharina A.C. Oswald, Christoph E. Albers, Sonja Häckel and Benjamin Gantenbein
Surgeries 2021, 2(1), 92-104; https://doi.org/10.3390/surgeries2010008 - 16 Feb 2021
Cited by 2 | Viewed by 3168
Abstract
(1) Background: Low back pain (LBP) is often associated with intervertebral disc degeneration (IVDD). Autochthonous progenitor cells isolated from the center, i.e., the nucleus pulposus, of the IVD (so-called nucleus pulposus progenitor cells (NPPCs)) could be a future cell source for therapy. The [...] Read more.
(1) Background: Low back pain (LBP) is often associated with intervertebral disc degeneration (IVDD). Autochthonous progenitor cells isolated from the center, i.e., the nucleus pulposus, of the IVD (so-called nucleus pulposus progenitor cells (NPPCs)) could be a future cell source for therapy. The NPPCs were also identified to be positive for the angiopoietin-1 receptor (Tie2). Similar to hematopoietic stem cells, Tie2 might be involved in peroxisome proliferator-activated receptor delta (PPARδ) agonist-induced self-renewal regulation. The purpose of this study was to investigate whether a PPARδ agonist (GW501516) increases the Tie2+ NPPCs’ yield within the heterogeneous nucleus pulposus cell (NPC) population. (2) Methods: Primary NPCs were treated with 10 µM of GW501516 for eight days. Mitochondrial mass was determined by microscopy, using mitotracker red dye, and the relative gene expression was quantified by qPCR, using extracellular matrix and mitophagy-related genes. (3) The NPC’s group treated with the PPARδ agonist showed a significant increase of the Tie2+ NPCs yield from ~7% in passage 1 to ~50% in passage two, compared to the NPCs vehicle-treated group. Furthermore, no significant differences were found among treatment and control, using qPCR and mitotracker deep red. (4) Conclusion: PPARδ agonist could help to increase the Tie2+ NPCs yield during NPC expansion. Full article
(This article belongs to the Special Issue New Approaches to Tissue Engineering for Musculoskeletal Repair)
Show Figures

Graphical abstract

17 pages, 6075 KiB  
Article
Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc
by Xingshuo Zhang, Julien Guerrero, Andreas S. Croft, Christoph E. Albers, Sonja Häckel and Benjamin Gantenbein
Int. J. Mol. Sci. 2020, 21(24), 9423; https://doi.org/10.3390/ijms21249423 - 10 Dec 2020
Cited by 16 | Viewed by 3301
Abstract
Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. [...] Read more.
Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix (ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR), immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched the percentage of Tie2+ in NPCs’ population from ~10% to ~36%. Moreover, the spheroid-formation assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture system could be successfully applied to the culture and expansion of tissue-specific progenitors. Full article
(This article belongs to the Special Issue Intervertebral Disc Disease: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

Back to TopTop