Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nonsynaptic mitochondria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 895 KB  
Review
Proteomic Signatures of Hippocampal Nonsynaptic and Synaptosome-Enriched Mitochondria in Rats Resilient to Chronic Social Isolation
by Dragana Filipović and Christoph W. Turck
Biomolecules 2025, 15(10), 1358; https://doi.org/10.3390/biom15101358 - 24 Sep 2025
Viewed by 251
Abstract
Chronic social isolation (CSIS), a known risk factor for the development of major depressive disorders, is associated with hippocampal dysfunction. In rodent models, CSIS produces two phenotypes: CSIS-susceptible, which develop depressive- and anxiety-like behaviors, and CSIS-resilient, which maintain normal behavior despite stress. However, [...] Read more.
Chronic social isolation (CSIS), a known risk factor for the development of major depressive disorders, is associated with hippocampal dysfunction. In rodent models, CSIS produces two phenotypes: CSIS-susceptible, which develop depressive- and anxiety-like behaviors, and CSIS-resilient, which maintain normal behavior despite stress. However, the biological mechanisms underlying resilience to stress remain elusive. Mitochondria, as central regulators of neuronal energy metabolism and redox balance, are potential mediators of stress susceptibility and resilience. This review summarizes comparative proteomic analyses of hippocampal nonsynaptic mitochondria (NSM) and synaptosome-enriched mitochondria from CSIS-susceptible and CSIS-resilient rats along with controls. In NSM of resilient rats relative to susceptible rats, remodeling enhanced energy production, limited reactive oxygen species, stabilized phosphate transport, and promoted removal of damaged components. Compared with controls, these changes optimized energy production, and selectively downregulated oxidative stress-promoting proteins. Conversely, synaptosome-enriched mitochondria from resilient rats showed downregulation of proteins related to synaptic energy metabolism and redox balance relative to CSIS-susceptible rats, but demonstrated upregulation of bioenergetic and antioxidant enzymes, molecular chaperones, and neuroprotective factors compared with controls. These proteomic signatures both highlight mitochondrial adaptability in promoting stress resilience and identify mitochondria as promising targets for the development of novel antidepressant therapies. Full article
(This article belongs to the Special Issue Insights into Mitochondria in Psychiatric Disorders)
Show Figures

Figure 1

19 pages, 2213 KB  
Article
Temporal Profiling of the Cortical Synaptic Mitochondrial Proteome Identifies Ageing Associated Regulators of Stability
by Laura C. Graham, Rachel A. Kline, Douglas J. Lamont, Thomas H. Gillingwater, Neil A. Mabbott, Paul A. Skehel and Thomas M. Wishart
Cells 2021, 10(12), 3403; https://doi.org/10.3390/cells10123403 - 2 Dec 2021
Cited by 2 | Viewed by 2993
Abstract
Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how [...] Read more.
Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how the synaptic mitochondrial proteome (including strongly mitochondrial associated proteins) was dynamically and temporally regulated throughout ageing to determine whether alterations in the expression of individual candidates can influence synaptic stability/morphology. Proteomic profiling of wild-type mouse cortical synaptic and non-synaptic mitochondria across the lifespan revealed significant age-dependent heterogeneity between mitochondrial subpopulations, with aged organelles exhibiting unique protein expression profiles. Recapitulation of aged synaptic mitochondrial protein expression at the Drosophila neuromuscular junction has the propensity to perturb the synaptic architecture, demonstrating that temporal regulation of the mitochondrial proteome may directly modulate the stability of the synapse in vivo. Full article
(This article belongs to the Special Issue Molecular-Cellular Basis of Ageing and Cancer)
Show Figures

Graphical abstract

13 pages, 22743 KB  
Article
Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening
by Yulia Baburuna, Linda Sotnikova and Olga Krestinina
Int. J. Mol. Sci. 2021, 22(19), 10613; https://doi.org/10.3390/ijms221910613 - 30 Sep 2021
Cited by 2 | Viewed by 2328
Abstract
The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed [...] Read more.
The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60–62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca2+ efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60–62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process. Full article
(This article belongs to the Special Issue Mitochondrial Ion Channels and Exchangers in Cellular Pathophysiology)
Show Figures

Figure 1

Back to TopTop