Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = nonlinear interfacial load-slip relationship

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4424 KiB  
Article
Analytical Modeling of Crack Widths and Cracking Loads in Structural RC Members
by David Z. Yankelevsky, Yuri S. Karinski and Vladimir R. Feldgun
Infrastructures 2022, 7(3), 40; https://doi.org/10.3390/infrastructures7030040 - 14 Mar 2022
Cited by 7 | Viewed by 3607
Abstract
Crack width is a major performance criterion in reinforced-concrete structures, in general, and is of utmost importance in ensuring bridge performance, in particular. A reliable theory-based method is required to assess crack widths and gain insight into their dependence on material, geometry, and [...] Read more.
Crack width is a major performance criterion in reinforced-concrete structures, in general, and is of utmost importance in ensuring bridge performance, in particular. A reliable theory-based method is required to assess crack widths and gain insight into their dependence on material, geometry, and loading parameters. A new, exact analytical method is proposed for a one-dimensional reinforced concrete element based on equilibrium, constitutive, and kinematic relationships, accounting for the geometrical and material behavior of the concrete and reinforcement. A linear interfacial bond stress slip is assumed to represents the small slips associated with the limited allowed crack width. Closed-form expressions have been developed and a wealth of information can be calculated immediately, such as the cracking load levels, the crack width dependence on the load level, the expected number of cracks, and the cracks spacing. The entire nonlinear force-displacement relationship of a cracked reinforced-concrete element may be depicted, demonstrating the tension-stiffening behavior that depends on the variations in the crack width throughout the loading history. Comparisons of the model with experimental data demonstrate very good agreement. Full article
(This article belongs to the Special Issue Structural Performances of Bridges)
Show Figures

Figure 1

15 pages, 2698 KiB  
Article
Numerical Investigation of the Nonlinear Composite Action of FRP-Concrete Hybrid Beams/Decks
by Jianwu Gong, Xingxing Zou, Han Shi, Cheng Jiang and Zhaochao Li
Appl. Sci. 2018, 8(11), 2031; https://doi.org/10.3390/app8112031 - 23 Oct 2018
Cited by 6 | Viewed by 2986
Abstract
Interfacial slip can cause rigidity degradation and stress concentration in fiber-reinforced polymer-concrete hybrid beam (FCHB). Therefore, precisely evaluating the composite action between fiber-reinforced polymer (FRP) and concrete of FCHB plays a pivotal role in structural analysis and design. Previous push-out tests showed that [...] Read more.
Interfacial slip can cause rigidity degradation and stress concentration in fiber-reinforced polymer-concrete hybrid beam (FCHB). Therefore, precisely evaluating the composite action between fiber-reinforced polymer (FRP) and concrete of FCHB plays a pivotal role in structural analysis and design. Previous push-out tests showed that most connections for FCHB behave nonlinearly in load-slip relationships even at a low load level. However, existing analytical equations have their limitations due to the assumption of linear load-slip interfacial relationship which is not suitable for FCHB. The originality of this paper is to propose a finite difference method (FDM) to elaborate the interfacial slip and shear stress. FDM agreed well with the analytical solutions of the linear load-slip relationships for connections. Results indicate that higher accurateness can be obtained by using more elements. And 40 elements for half span of FCHB can reduce the error of numerical results to 1%. Then, the proposed FDM was expanded to predict the interfacial behavior of FCHB considering nonlinear interfacial load-slip relationships. It was found that perforated FRP rib connections can ensure nearly full composite action and the bolted connection can lead to a very high slip level. The use of ultra-high performance concrete (UHPC) results in a higher degree of composite action than normal concrete. The deflection considering slip was computed by adding deformation under full composition action and that caused by the slip effect. It was suggested that high strength steel bolts are effective both in normal concrete and UHPC. When the slip modulus is suggested to be larger than 20 kN/mm, the capacity per bolt should be larger than 20 kN. Full article
(This article belongs to the Special Issue Emerging Construction Materials and Sustainable Infrastructure)
Show Figures

Figure 1

Back to TopTop