Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = non-junctional SR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4887 KB  
Review
Calreticulin—Enigmatic Discovery
by Gillian C. Okura, Alamelu G. Bharadwaj and David M. Waisman
Biomolecules 2024, 14(7), 866; https://doi.org/10.3390/biom14070866 - 19 Jul 2024
Cited by 5 | Viewed by 1906
Abstract
Calreticulin (CRT) is an intrinsically disordered multifunctional protein that plays essential roles intra-and extra-cellularly. The Michalak laboratory has proposed that CRT was initially identified in 1974 by the MacLennan laboratory as the high-affinity Ca2+-binding protein (HACBP) of the sarcoplasmic reticulin (SR). [...] Read more.
Calreticulin (CRT) is an intrinsically disordered multifunctional protein that plays essential roles intra-and extra-cellularly. The Michalak laboratory has proposed that CRT was initially identified in 1974 by the MacLennan laboratory as the high-affinity Ca2+-binding protein (HACBP) of the sarcoplasmic reticulin (SR). This widely accepted belief has been ingrained in the scientific literature but has never been rigorously tested. In our report, we have undertaken a comprehensive reexamination of this assumption by meticulously examining the majority of published studies that present a proteomic analysis of the SR. These analyses have utilized proteomic analysis of purified SR preparations or purified components of the SR, namely the longitudinal tubules and junctional terminal cisternae. These studies have consistently failed to detect the HACBP or CRT in skeletal muscle SR. We propose that the existence of the HACBP has failed the test of reproducibility and should be retired to the annals of antiquity. Therefore, the scientific dogma that the HACBP and CRT are identical proteins is a non sequitur. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Graphical abstract

21 pages, 17113 KB  
Article
Petrogenesis of Early Cretaceous Granitoids in the Qingdao Area, Jiaodong Peninsula: Constraints from Zircon U–Pb Ages, Geochemistry and Sr–Nd–Hf Isotopes
by Yi Ding, Xuejiao Bu, Hong Zhao, Shihua Zhong and Ming Liu
Minerals 2023, 13(7), 963; https://doi.org/10.3390/min13070963 - 20 Jul 2023
Cited by 2 | Viewed by 1912
Abstract
The Jiaodong Peninsula is located on the junction of the North China Craton (NCC) and South China Block (SCB), where Mesozoic igneous rocks are widespread. However, the petrogenesis and tectonic settings for these Mesozoic igneous rocks are still controversial. In this study, we [...] Read more.
The Jiaodong Peninsula is located on the junction of the North China Craton (NCC) and South China Block (SCB), where Mesozoic igneous rocks are widespread. However, the petrogenesis and tectonic settings for these Mesozoic igneous rocks are still controversial. In this study, we present detailed geochronological and geochemical analyses of quartz monzonite, monzogranite, syenogranite, and alkali feldspar granite in the Qingdao area, east of the Jiaodong Peninsula, to constrain their petrogenesis and tectonic setting. Zircon U–Pb dating shows that they mainly formed in the Early Cretaceous (120.5–113.1 Ma). Quartz monzonite exhibits adakitic geochemical features (e.g., low Y and high Sr/Y). Combined with its Sr–Nd–Hf isotopic features, we suggest that quartz monzonite may have been produced by the partial melting of phengite-bearing eclogites at the base of the thickened continental crust of the NCC. In contrast, monzogranite and syenogranite exhibit I-type granite affinities, whereas alkali feldspar granite exhibits features consistent with A-type granite. The strongly negative εHf(t) and εNd(t) values of the I-type rocks indicate that they were most likely produced through partial melting of granitic gneisses from the NCC, whereas A-type magmas may be formed through fractional crystallization from the non-adakitic granitic magma. Combined with previous studies, we suggest that these granitoids were formed in a lithospheric extensional setting via the rollback of the subducted Paleo-Pacific slab, which resulted in the reworking of the deep crust beneath the Sulu ultrahigh-pressure metamorphic belt. Full article
(This article belongs to the Special Issue Isotope Geochemical Analysis Technology and Its Applications)
Show Figures

Figure 1

12 pages, 3461 KB  
Article
A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions
by Xiaotao Xu, Xi He, Anthony T. Bollinger, Myung-Geun Han, Yimei Zhu, Xiaoyan Shi and Ivan Božović
Condens. Matter 2023, 8(1), 21; https://doi.org/10.3390/condmat8010021 - 10 Feb 2023
Cited by 2 | Viewed by 2398
Abstract
C-axis trilayer cuprate Josephson junctions are essential for basic science and digital circuit applications of high-temperature superconductors. We present a method for probing the interface perfection in La2−xSrxCuO4 (LSCO)-LaSrAlO4 (LSAO)-La2−xSrxCuO [...] Read more.
C-axis trilayer cuprate Josephson junctions are essential for basic science and digital circuit applications of high-temperature superconductors. We present a method for probing the interface perfection in La2−xSrxCuO4 (LSCO)-LaSrAlO4 (LSAO)-La2−xSrxCuO4 trilayer junctions. A series of LSCO-LSAO superlattices with atomically smooth surfaces and sharp interfaces were grown by the atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) technique. We have systematically varied the thickness of LSCO and LSAO layers with monolayer precision. By studying the mutual inductance and electrical transport in these superlattices, we detect the non-superconducting (“dead”) layers at the interfaces and quantify their thicknesses. Our results indicate that two optimally doped LSCO monolayers just above and below the one monolayer LSAO barrier are no longer superconducting, rendering the actual barrier thickness of five monolayers. Next, we have shown that introducing a protective highly-overdoped LSCO layer reduces the thickness of dead layers by one or two monolayers. Full article
Show Figures

Figure 1

9 pages, 939 KB  
Brief Report
The ‘Reverse FDUF’ Mechanism of Atrial Excitation–Contraction Coupling Sustains Calcium Alternans—A Hypothesis
by Kathrin Banach and Lothar A. Blatter
Biomolecules 2023, 13(1), 7; https://doi.org/10.3390/biom13010007 - 20 Dec 2022
Cited by 3 | Viewed by 2427
Abstract
Cardiac calcium alternans is defined as beat-to-beat alternations of Ca transient (CaT) amplitude and has been linked to cardiac arrhythmia, including atrial fibrillation. We investigated the mechanism of atrial alternans in isolated rabbit atrial myocytes using high-resolution line scan confocal Ca imaging. Alternans [...] Read more.
Cardiac calcium alternans is defined as beat-to-beat alternations of Ca transient (CaT) amplitude and has been linked to cardiac arrhythmia, including atrial fibrillation. We investigated the mechanism of atrial alternans in isolated rabbit atrial myocytes using high-resolution line scan confocal Ca imaging. Alternans was induced by increasing the pacing frequency until stable alternans was observed (1.6–2.5 Hz at room temperature). In atrial myocytes, action potential-induced Ca release is initiated in the cell periphery and subsequently propagates towards the cell center by Ca-induced Ca release (CICR) in a Ca wave-like fashion, driven by the newly identified ‘fire-diffuse-uptake-fire’ (FDUF) mechanism. The development of CaT alternans was accompanied by characteristic changes of the spatio-temporal organization of the CaT. During the later phase of the CaT, central [Ca]i exceeded peripheral [Ca]i that was indicative of a reversal of the subcellular [Ca]i gradient from centripetal to centrifugal. This gradient reversal resulted in a reversal of CICR propagation, causing a secondary Ca release during the large-amplitude alternans CaT, thereby prolonging the CaT, enhancing Ca-release refractoriness and reducing Ca release on the subsequent beat, thus enhancing the degree of CaT alternans. Here, we propose the ‘reverse FDUF’ mechanism as a novel cellular mechanism of atrial CaT alternans, which explains how the uncoupling of central from peripheral Ca release leads to the reversal of propagating CICR and to alternans. Full article
(This article belongs to the Special Issue Calcium Regulation in the Cardiac Cells)
Show Figures

Figure 1

17 pages, 6054 KB  
Article
Evaluation and Optimization of a Cross-Rib Micro-Channel Heat Sink
by Haiying Chen, Chuan Chen, Yunyan Zhou, Chenglin Yang, Gang Song, Fengze Hou, Binbin Jiao and Ruiwen Liu
Micromachines 2022, 13(1), 132; https://doi.org/10.3390/mi13010132 - 14 Jan 2022
Cited by 16 | Viewed by 5256
Abstract
This article presents a novel cross-rib micro-channel (MC-CR) heat sink to make fluid self-rotate. For a thermal test chip (TTC) with 100 w/cm2, the cross-ribs micro-channel were compared with the rectangular (MC-R) and horizontal rib micro-channel (MC-HR) heat sinks. The results [...] Read more.
This article presents a novel cross-rib micro-channel (MC-CR) heat sink to make fluid self-rotate. For a thermal test chip (TTC) with 100 w/cm2, the cross-ribs micro-channel were compared with the rectangular (MC-R) and horizontal rib micro-channel (MC-HR) heat sinks. The results show that, with the cross-rib micro-channel, the junction temperature of the thermal test chip was 336.49 K, and the pressure drop was 22 kPa. Compared with the rectangular and horizontal ribs heat sink, the cross-rib micro-channel had improvements of 28.6% and 14.3% in cooling capability, but the pressure drop increased by 10.7-fold and 5.5-fold, respectively. Then, the effects of the aspect ratio (λ) of micro-channel in different flow rates were studied. It was found that the aspect ratio and cooling performance were non-linear. To reduce the pressure drop, the inclination (α) and spacing (S) of the cross-ribs were optimized. When α = 30°, S = 0.1 mm, and λ = 4, the pressure drop was reduced from 22 kPa to 4.5 kPa. In addition, the heat dissipation performance of the rectangular, staggered fin (MC-SF), staggered rib (MC-SR) and cross-rib micro-channels were analyzed in the condition of the same pressure drop, MC-CR still has superior heat dissipation performance. Full article
Show Figures

Figure 1

16 pages, 3378 KB  
Review
A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions
by Muhammad Shahbaz Anwar and Jason W. A. Robinson
Coatings 2021, 11(9), 1110; https://doi.org/10.3390/coatings11091110 - 14 Sep 2021
Cited by 6 | Viewed by 4308
Abstract
We review electronic transport in superconducting junctions with Sr2RuO4. Transport measurements provide evidence for chiral domain walls and, therefore, chiral superconductivity in superconducting Sr2RuO4, but so far, the symmetry of the underlying superconducting state remains [...] Read more.
We review electronic transport in superconducting junctions with Sr2RuO4. Transport measurements provide evidence for chiral domain walls and, therefore, chiral superconductivity in superconducting Sr2RuO4, but so far, the symmetry of the underlying superconducting state remains inconclusive. Further studies involving density of states measurements and spin-polarised transport in local/non-local Sr2RuO4 junctions with magnetic materials could lead to fundamental discoveries and a better understanding of the superconducting state. Full article
(This article belongs to the Special Issue Advances in Superconducting Films)
Show Figures

Figure 1

9 pages, 1553 KB  
Article
Effect of Alpha-Particle Irradiation on InGaP/GaAs/Ge Triple-Junction Solar Cells
by Jing Xu, Min Guo, Ming Lu, Hu He, Guang Yang and Jianwen Xu
Materials 2018, 11(6), 944; https://doi.org/10.3390/ma11060944 - 4 Jun 2018
Cited by 14 | Viewed by 4108
Abstract
InGaP/GaAs/Ge triple-junction solar cells were irradiated with 5.1 MeV alpha particles with different fluences. The degradations of the optical and electrical properties of InGaP/GaAs/Ge solar cells were described in terms of the variation in the short-circuit current (Isc), the open-circuit voltage [...] Read more.
InGaP/GaAs/Ge triple-junction solar cells were irradiated with 5.1 MeV alpha particles with different fluences. The degradations of the optical and electrical properties of InGaP/GaAs/Ge solar cells were described in terms of the variation in the short-circuit current (Isc), the open-circuit voltage (Voc), the maximum power (Pmax), the spectral response (SR), and the photoluminescence (PL) versus the 5.1 MeV alpha-particle fluences. The degradation modeling of the Isc and Voc under 1 MeV, 3 MeV, and 5.1 MeV alpha-particle irradiation was performed by calculating the introduction rate of non-radiative recombination centers, and the minority-carrier capture cross section, and the results were in good agreement with experimental data. For comparison, the degradations of the Isc and Voc were presented under 1 MeV and 3 MeV proton irradiation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

13 pages, 7281 KB  
Article
Alignment of Mitotic Chromosomes in Human Cells Involves SR-Like Splicing Factors Btf and TRAP150
by Sapna Varia, Divya Cheedu, Michael Markey, Keshia Torres-Shafer, Vishnu Priya Battini, Athanasios Bubulya and Paula A. Bubulya
Int. J. Mol. Sci. 2017, 18(9), 1956; https://doi.org/10.3390/ijms18091956 - 12 Sep 2017
Cited by 5 | Viewed by 4752
Abstract
Serine-arginine-rich (SR) or SR-like splicing factors interact with exon junction complex proteins during pre-mRNA processing to promote mRNA packaging into mature messenger ribonucleoproteins (mRNPs) and to dictate mRNA stability, nuclear export, and translation. The SR protein family is complex, and while many classical [...] Read more.
Serine-arginine-rich (SR) or SR-like splicing factors interact with exon junction complex proteins during pre-mRNA processing to promote mRNA packaging into mature messenger ribonucleoproteins (mRNPs) and to dictate mRNA stability, nuclear export, and translation. The SR protein family is complex, and while many classical SR proteins have well-defined mRNA processing functions, those of other SR-like proteins is unclear. Here, we show that depletion of the homologous non-classical serine-arginine-rich (SR) splicing factors Bcl2-associated transcription factor (Btf or BCLAF) and thyroid hormone receptor-associated protein of 150 kDa (TRAP150) causes mitotic defects. We hypothesized that the depletion of these SR-like factors affects mitosis indirectly through an altered expression of mitotic checkpoint regulator transcripts. We observed an altered abundance of transcripts that encode mitotic regulators and mitotic chromosome misalignment defects following Btf and/or TRAP150 depletion. We propose that, in addition to their previously reported roles in maintaining mRNA distribution, Btf and TRAP150 control the abundance of transcripts encoding mitotic regulators, thereby affecting mitotic progression in human cells. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop