Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = non-desmosomal variant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1514 KiB  
Article
A Comprehensive Analysis of Non-Desmosomal Rare Genetic Variants in Arrhythmogenic Cardiomyopathy: Integrating in Padua Cohort Literature-Derived Data
by Maria Bueno Marinas, Marco Cason, Riccardo Bariani, Rudy Celeghin, Monica De Gaspari, Serena Pinci, Alberto Cipriani, Ilaria Rigato, Alessandro Zorzi, Stefania Rizzo, Gaetano Thiene, Martina Perazzolo Marra, Domenico Corrado, Cristina Basso, Barbara Bauce and Kalliopi Pilichou
Int. J. Mol. Sci. 2024, 25(11), 6267; https://doi.org/10.3390/ijms25116267 - 6 Jun 2024
Cited by 4 | Viewed by 1774
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC. Full article
(This article belongs to the Special Issue Novel Biomarkers for Cardiovascular Diseases)
Show Figures

Figure 1

15 pages, 822 KiB  
Review
Advances in Ion Channel, Non-Desmosomal Variants and Autophagic Mechanisms Implicated in Arrhythmogenic Cardiomyopathy
by Kexin Li, Yufeng Jiang, Yiyao Zeng and Yafeng Zhou
Curr. Issues Mol. Biol. 2023, 45(3), 2186-2200; https://doi.org/10.3390/cimb45030141 - 7 Mar 2023
Cited by 2 | Viewed by 2345
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heterogeneous disorder characterized by the replacement of cardiac myocytes with fibro-fatty tissues, leading to abnormal excitation-contraction (EC) coupling and a range of malignant events, such as ventricular tachycardia (VT), sudden cardiac death/arrest (SCD/A) and heart failure (HF). The [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is a heterogeneous disorder characterized by the replacement of cardiac myocytes with fibro-fatty tissues, leading to abnormal excitation-contraction (EC) coupling and a range of malignant events, such as ventricular tachycardia (VT), sudden cardiac death/arrest (SCD/A) and heart failure (HF). The concept of ACM has recently been ex-tended to include right ventricular cardiomyopathy (ARVC), left ventricular cardiomyopathy (ALVC) and biventricular cardiomyopathy. ARVC is generally seen as the most common type of ACM. The pathogenesis of ACM involves mutation variants in desmosomal or non-desmosomal gene loci, as well as various external factors, such as intense exercise, stress and infections. Ion channel alterations, autophagy and non-desmosomal variants are also important components in the development of ACM. As clinical practice enters the era of precision therapy, it is important to review recent studies on these topics to better diagnose and treat the molecular phase of ACM. Full article
(This article belongs to the Special Issue A Focus on Molecular Basis in Cardiac Diseases)
Show Figures

Figure 1

15 pages, 2945 KiB  
Article
Buccal Mucosa Cells as a Potential Diagnostic Tool to Study Onset and Progression of Arrhythmogenic Cardiomyopathy
by Helen E. Driessen, Stephanie M. van der Voorn, Mimount Bourfiss, Freyja H. M. van Lint, Ferogh Mirzad, Laila El Onsri, Marc A. Vos and Toon A. B. van Veen
Int. J. Mol. Sci. 2022, 23(1), 57; https://doi.org/10.3390/ijms23010057 - 21 Dec 2021
Cited by 4 | Viewed by 2935
Abstract
In arrhythmogenic cardiomyopathy (ACM) pathogenic variants are found in genes encoding desmosomal proteins and in non-desmosomal genes, such as phospholamban (PLN, p.Arg14del variant). Previous research showed that plakoglobin protein levels and localization in the cardiac tissue of ACM patients, and PLN [...] Read more.
In arrhythmogenic cardiomyopathy (ACM) pathogenic variants are found in genes encoding desmosomal proteins and in non-desmosomal genes, such as phospholamban (PLN, p.Arg14del variant). Previous research showed that plakoglobin protein levels and localization in the cardiac tissue of ACM patients, and PLN p.Arg14del patients diagnosed with an ACM phenotype, are disturbed. Moreover, the effects of pathogenic variants in desmosomal genes are reflected in non-cardiac tissues like buccal mucosa cells (BMC) which could serve as a promising new and non-invasive tool to support diagnosis. We collected the BMC of 33 ACM patients, 17 PLN p.Arg14del patients and 34 controls, labelled the BMC with anti-plakoglobin antibodies at different concentrations, and scored their membrane labelling. We found that plakoglobin protein levels were significantly reduced in BMC obtained from diagnosed ACM patients and preclinical variant carriers when compared to controls. This effect was independent from age and sex. Moderate to strong correlations were found with the revised 2010 Task Force Criteria score which is commonly used for ACM diagnosis (rs = −0.67, n = 64, p < 0.0001 and rs = −0.71, n = 64, p < 0.0001). In contrast, plakoglobin scores in PLN p.Arg14del patients were comparable to controls (p > 0.209), which suggests differences in underlying etiology. However, for the individual diagnosis of the ‘classical’ ACM patient, this method might not be discriminative enough to distinguish true patients from variant carriers and controls, because of the high interindividual variability. Full article
(This article belongs to the Special Issue The Physiology of Striated Muscle Tissues)
Show Figures

Figure 1

14 pages, 287 KiB  
Review
Pemphigus—The Crux of Clinics, Research, and Treatment during the COVID-19 Pandemic
by Branka Marinović, Joško Miše, Ines Lakoš Jukić and Zrinka Bukvić Mokos
Biomedicines 2021, 9(11), 1555; https://doi.org/10.3390/biomedicines9111555 - 28 Oct 2021
Cited by 8 | Viewed by 3454
Abstract
Pemphigus is a rare autoimmune disease characterised by the production of pathogenic autoantibodies in response to different desmosome proteins. The pathophysiological process leads to the development of blisters and erosions on mucosal and/or skin surfaces. The classical clinical variants of pemphigus are pemphigus [...] Read more.
Pemphigus is a rare autoimmune disease characterised by the production of pathogenic autoantibodies in response to different desmosome proteins. The pathophysiological process leads to the development of blisters and erosions on mucosal and/or skin surfaces. The classical clinical variants of pemphigus are pemphigus vulgaris and pemphigus foliaceus. A diagnostic delay is very common in pemphigus, especially among patients with mucosal involvement. However, in recent years we have witnessed considerably fewer patients with extensive mucocutaneous manifestations, since patients with oral lesions are referred to dermatologists to start the treatment much sooner than they had been previously. Among non-classical variants of pemphigus, unusual cases with discrepancies between autoantibody profiles and clinics challenge the “desmoglein compensation theory”. The identification of several other autoantigens that perform a role in the pathogenesis of different variants of pemphigus will progress immunodermatology towards an approach that will determine personalized pemphigus subtypes for each patient. Comorbidities among patients are primarily associated with the prolonged use of corticosteroids and other immunosuppressive agents. The SARS-CoV-2 pandemic raised concerns regarding the immunosuppressive effects of treatment and the risk of a more complicated COVID-19 infection, as well as on the ability to develop an adequate vaccine response. Full article
(This article belongs to the Special Issue Autoimmune Blistering Diseases)
21 pages, 9640 KiB  
Article
Altered Electrical, Biomolecular, and Immunologic Phenotypes in a Novel Patient-Derived Stem Cell Model of Desmoglein-2 Mutant ARVC
by Robert N. Hawthorne, Adriana Blazeski, Justin Lowenthal, Suraj Kannan, Roald Teuben, Deborah DiSilvestre, Justin Morrissette-McAlmon, Jeffrey E. Saffitz, Kenneth R. Boheler, Cynthia A. James, Stephen P. Chelko, Gordon Tomaselli and Leslie Tung
J. Clin. Med. 2021, 10(14), 3061; https://doi.org/10.3390/jcm10143061 - 10 Jul 2021
Cited by 28 | Viewed by 4981
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly [...] Read more.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly in early phases when arrhythmias can develop prior to structural changes. Here, we created a novel human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of ARVC from a patient with a c.2358delA variant in desmoglein-2 (DSG2). These DSG2-mutant (DSG2Mut) hiPSC-CMs were compared against two wildtype hiPSC-CM lines via immunostaining, RT-qPCR, Western blot, RNA-Seq, cytokine expression and optical mapping. Mutant cells expressed reduced DSG2 mRNA and had altered localization of desmoglein-2 protein alongside thinner, more disorganized myofibrils. No major changes in other desmosomal proteins were noted. There was increased pro-inflammatory cytokine expression that may be linked to canonical and non-canonical NFκB signaling. Action potentials in DSG2Mut CMs were shorter with increased upstroke heterogeneity, while time-to-peak calcium and calcium decay rate were reduced. These were accompanied by changes in ion channel and calcium handling gene expression. Lastly, suppressing DSG2 in control lines via siRNA allowed partial recapitulation of electrical anomalies noted in DSG2Mut cells. In conclusion, the aberrant cytoskeletal organization, cytokine expression, and electrophysiology found DSG2Mut hiPSC-CMs could underlie early mechanisms of disease manifestation in ARVC patients. Full article
(This article belongs to the Special Issue New Frontiers in Arrhythmogenic Cardiomyopathies)
Show Figures

Figure 1

15 pages, 3561 KiB  
Case Report
The Double Mutation DSG2-p.S363X and TBX20-p.D278X Is Associated with Left Ventricular Non-Compaction Cardiomyopathy: Case Report
by Roman Myasnikov, Andreas Brodehl, Alexey Meshkov, Olga Kulikova, Anna Kiseleva, Greta Marie Pohl, Evgeniia Sotnikova, Mikhail Divashuk, Marina Klimushina, Anastasia Zharikova, Maria Pokrovskaya, Sergey Koretskiy, Maria Kharlap, Elena Mershina, Valentin Sinitsyn, Elena Basargina, Leila Gandaeva, Vladimir Barskiy, Sergey Boytsov, Hendrik Milting and Oxana Drapkinaadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2021, 22(13), 6775; https://doi.org/10.3390/ijms22136775 - 24 Jun 2021
Cited by 13 | Viewed by 3030
Abstract
Left ventricular non-compaction cardiomyopathy (LVNC) is a rare heart disease, with or without left ventricular dysfunction, which is characterized by a two-layer structure of the myocardium and an increased number of trabeculae. The study of familial forms of LVNC is helpful for risk [...] Read more.
Left ventricular non-compaction cardiomyopathy (LVNC) is a rare heart disease, with or without left ventricular dysfunction, which is characterized by a two-layer structure of the myocardium and an increased number of trabeculae. The study of familial forms of LVNC is helpful for risk prediction and genetic counseling of relatives. Here, we present a family consisting of three members with LVNC. Using a next-generation sequencing approach a combination of two (likely) pathogenic nonsense mutations DSG2-p.S363X and TBX20-p.D278X was identified in all three patients. TBX20 encodes the cardiac T-box transcription factor 20. DSG2 encodes desmoglein–2, which is part of the cardiac desmosomes and belongs to the cadherin family. Since the identified nonsense variant (DSG2-p.S363X) is localized in the extracellular domain of DSG2, we performed in vitro cell transfection experiments. These experiments revealed the absence of truncated DSG2 at the plasma membrane, supporting the pathogenic relevance of DSG2-p.S363X. In conclusion, we suggest that in the future, these findings might be helpful for genetic screening and counseling of patients with LVNC. Full article
(This article belongs to the Special Issue Atherosclerosis and Other Related-Arterial Diseases)
Show Figures

Figure 1

17 pages, 3474 KiB  
Review
Arrhythmogenic Left Ventricular Cardiomyopathy: Genotype-Phenotype Correlations and New Diagnostic Criteria
by Giulia Mattesi, Alberto Cipriani, Barbara Bauce, Ilaria Rigato, Alessandro Zorzi and Domenico Corrado
J. Clin. Med. 2021, 10(10), 2212; https://doi.org/10.3390/jcm10102212 - 20 May 2021
Cited by 29 | Viewed by 4857
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by loss of ventricular myocardium and fibrofatty replacement, which predisposes to scar-related ventricular arrhythmias and sudden cardiac death, particularly in the young and athletes. Although in its original description the disease was characterized [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by loss of ventricular myocardium and fibrofatty replacement, which predisposes to scar-related ventricular arrhythmias and sudden cardiac death, particularly in the young and athletes. Although in its original description the disease was characterized by an exclusive or at least predominant right ventricle (RV) involvement, it has been demonstrated that the fibrofatty scar can also localize in the left ventricle (LV), with the LV lesion that can equalize or even overcome that of the RV. While the right-dominant form is typically associated with mutations in genes encoding for desmosomal proteins, other (non-desmosomal) mutations have been showed to cause the biventricular and left-dominant variants. This has led to a critical evaluation of the 2010 International Task Force criteria, which exclusively addressed the right phenotypic manifestations of ACM. An International Expert consensus document has been recently developed to provide upgraded criteria (“the Padua Criteria”) for the diagnosis of the whole spectrum of ACM phenotypes, particularly left-dominant forms, highlighting the use of cardiac magnetic resonance. This review aims to offer an overview of the current knowledge on the genetic basis, the phenotypic expressions, and the diagnosis of left-sided variants, both biventricular and left-dominant, of ACM. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

17 pages, 5327 KiB  
Article
Arrhythmogenic Cardiomyopathy Is a Multicellular Disease Affecting Cardiac and Bone Marrow Mesenchymal Stromal Cells
by Arianna Scalco, Cristina Liboni, Roberta Angioni, Anna Di Bona, Mattia Albiero, Nicole Bertoldi, Gian Paolo Fadini, Gaetano Thiene, Stephen P. Chelko, Cristina Basso, Antonella Viola, Marco Mongillo and Tania Zaglia
J. Clin. Med. 2021, 10(9), 1871; https://doi.org/10.3390/jcm10091871 - 26 Apr 2021
Cited by 13 | Viewed by 3765
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the [...] Read more.
Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the disease urgently needs mechanism-driven therapies. Current AC research is mainly focused on ‘desmosome-carrying’ cardiomyocytes, but desmosomal proteins are also expressed by non-myocyte cells, which also harbor AC variants, including mesenchymal stromal cells (MSCs). Consistently, cardiac-MSCs contribute to adipose tissue in human AC hearts. We thus approached AC as a multicellular disorder, hypothesizing that it also affects extra-cardiac bone marrow (BM)-MSCs. Our results show changes in the desmosomal protein profile of both cardiac- and BM- MSCs, from desmoglein-2 (Dsg2)-mutant mice, accompanied with profound alterations in cytoskeletal organization, which are directly caused by AC-linked DSG2 downregulation. In addition, AC BM-MSCs display increased proliferation rate, both in vitro and in vivo, and, by using the principle of the competition homing assay, we demonstrated that mutant circulating BM-MSCs have increased propensity to migrate to the AC heart. Taken altogether, our results indicate that cardiac- and BM- MSCs are additional cell types affected in Dsg2-linked AC, warranting the novel classification of AC as a multicellular and multiorgan disease. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

13 pages, 2337 KiB  
Review
Natural History of Arrhythmogenic Cardiomyopathy
by Giulia Mattesi, Alessandro Zorzi, Domenico Corrado and Alberto Cipriani
J. Clin. Med. 2020, 9(3), 878; https://doi.org/10.3390/jcm9030878 - 23 Mar 2020
Cited by 39 | Viewed by 5788
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a scarred ventricular myocardium with a distinctive propensity to ventricular arrhythmias (VAs) and sudden cardiac death, especially in young athletes. Arrhythmogenic right ventricular cardiomyopathy (ARVC) represents the best characterized variant of AC, with [...] Read more.
Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a scarred ventricular myocardium with a distinctive propensity to ventricular arrhythmias (VAs) and sudden cardiac death, especially in young athletes. Arrhythmogenic right ventricular cardiomyopathy (ARVC) represents the best characterized variant of AC, with a peculiar genetic background, established diagnostic criteria and management guidelines; however, the identification of nongenetic causes of the disease, combined with the common demonstration of biventricular and left-dominant forms, has led to coin the term of “arrhythmogenic cardiomyopathy”, to better define the broad spectrum of the disease phenotypic expressions. The genetic basis of AC are pathogenic mutations in genes encoding the cardiac desmosomes, but also non-desmosomal and nongenetic variants were reported in patients with AC, some of which showing overlapping phenotypes with other non-ischemic diseases. The natural history of AC is characterized by VAs and progressive deterioration of cardiac performance. Different phases of the disease are recognized, each characterized by pathological and clinical features. Arrhythmic manifestations are age-related: Ventricular fibrillation and SCD are more frequent in young people, while sustained ventricular tachycardia is more common in the elderly, depending on the different nature of the myocardial lesions. This review aims to address the genetic basis, the clinical course and the phenotypic variants of AC. Full article
(This article belongs to the Special Issue The Metabolic Mechanisms of Cardiomyopathy)
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
A microRNA Expression Profile as Non-Invasive Biomarker in a Large Arrhythmogenic Cardiomyopathy Cohort
by Maria Bueno Marinas, Rudy Celeghin, Marco Cason, Riccardo Bariani, Anna Chiara Frigo, Joanna Jager, Petros Syrris, Perry M. Elliott, Barbara Bauce, Gaetano Thiene, Domenico Corrado, Cristina Basso and Kalliopi Pilichou
Int. J. Mol. Sci. 2020, 21(4), 1536; https://doi.org/10.3390/ijms21041536 - 24 Feb 2020
Cited by 29 | Viewed by 4838
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a clinically and genetically heterogeneous myocardial disease. Half of AC patients harbour private desmosomal gene variants. Although microRNAs (miRNAs) have emerged as key regulator molecules in cardiovascular diseases and their involvement, correlated to phenotypic variability or to non-invasive biomarkers, [...] Read more.
Arrhythmogenic Cardiomyopathy (AC) is a clinically and genetically heterogeneous myocardial disease. Half of AC patients harbour private desmosomal gene variants. Although microRNAs (miRNAs) have emerged as key regulator molecules in cardiovascular diseases and their involvement, correlated to phenotypic variability or to non-invasive biomarkers, has been advanced also in AC, no data are available in larger disease cohorts. Here, we propose the largest AC cohort unbiased by technical and biological factors. MiRNA profiling on nine right ventricular tissue, nine blood samples of AC patients, and four controls highlighted 10 differentially expressed miRNAs in common. Six of these were validated in a 90-AC patient cohort independent from genetic status: miR-122-5p, miR-133a-3p, miR-133b, miR-142-3p, miR-182-5p, and miR-183-5p. This six-miRNA set showed high discriminatory diagnostic power in AC patients when compared to controls (AUC-0.995), non-affected family members of AC probands carrying a desmosomal pathogenic variant (AUC-0.825), and other cardiomyopathy groups (Hypertrophic Cardiomyopathy: AUC-0.804, Dilated Cardiomyopathy: AUC-0.917, Brugada Syndrome: AUC-0.981, myocarditis: AUC-0.978). AC-related signalling pathways were targeted by this set of miRNAs. A unique set of six-miRNAs was found both in heart-tissue and blood samples of AC probands, supporting its involvement in disease pathogenesis and its possible role as a non-invasive AC diagnostic biomarker. Full article
(This article belongs to the Special Issue Genetics and Molecular Pathogenesis of Non-ischemic Cardiomyopathies)
Show Figures

Figure 1

Back to TopTop