Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = non-cytolytic virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1847 KiB  
Review
Immunological Control of Herpes Simplex Virus Type 1 Infection: A Non-Thermal Plasma-Based Approach
by Julia Sutter, Jennifer L. Hope, Brian Wigdahl, Vandana Miller and Fred C. Krebs
Viruses 2025, 17(5), 600; https://doi.org/10.3390/v17050600 - 23 Apr 2025
Viewed by 1444
Abstract
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful [...] Read more.
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful vaccine development, and the inability of the host immune system to clear HSV-1. Despite the inefficiencies of the immune system, the course of HSV-1 infection remains under strict immunological control. Specifically, HSV-1 is controlled by a CD8+ T cell response that is cytotoxic to HSV-1-infected cells, restricts acute infection, and uses noncytolytic mechanisms to suppress reactivation in the TG. When this CD8+ T cell response is disrupted, reactivation of latent HSV-1 occurs. With antiviral therapies unable to cure HSV-1 and prophylactic vaccine strategies failing to stimulate a protective response, we propose non-thermal plasma (NTP) as a potential therapy effective against recurrent HSV-1 infection. We have demonstrated that NTP, when applied directly to HSV-1-infected cells, has antiviral effects and stimulates cellular stress and immunomodulatory responses. We further propose that the direct effects of NTP will lead to long-lasting indirect effects such as reduced viral seeding into the TG and enhanced HSV-1-specific CD8+ T cell responses that exert greater immune control over HSV-1 infection. Full article
(This article belongs to the Special Issue Herpesviruses and Associated Diseases)
Show Figures

Figure 1

21 pages, 2347 KiB  
Article
Comparison of the L3-23K and L5-Fiber Regions for Arming the Oncolytic Adenovirus Ad5-Delta-24-RGD with Reporter and Therapeutic Transgenes
by Aleksei A. Stepanenko, Anastasiia O. Sosnovtseva, Marat P. Valikhov, Anastasiia A. Vasiukova, Olga V. Abramova, Anastasiia V. Lipatova, Gaukhar M. Yusubalieva and Vladimir P. Chekhonin
Int. J. Mol. Sci. 2025, 26(8), 3700; https://doi.org/10.3390/ijms26083700 - 14 Apr 2025
Viewed by 690
Abstract
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of [...] Read more.
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of splicing acceptor, an insert downstream of the L5-Fiber region may substantially affect virus fitness. Since the insertion of transgenes downstream of the L3-23K and L5-Fiber regions has never been compared in terms of their expression levels and impact on virus fitness, we assessed the total virus yield, cytolytic efficacy, and plaque size of Ad5-delta-24-RGD (Ad5Δ24RGD) armed with EGFP, FLuc, the suppressor of RNA silencing p19, soluble wild-type human/mouse and high-affinity human programmed cell death receptor-1 (PD-1/PDCD1) ectodomains, and soluble human hyaluronidase PH20/SPAM1. The insertion of transgenes downstream of the L3-23K region ensures their production at considerably higher levels. However, the insertion of transgenes downstream of either region differentially and unpredictably affects the oncolytic potency of Ad5Δ24RGD, which cannot be explained by GC3% or expression level alone. Surprisingly, the expression of the human and mouse PD-1 ectodomains with 83.1% and 70.1% GC3%, respectively, does not affect cytolytic efficacy but increases the plaque size in a cell line-dependent manner. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 3006 KiB  
Article
Immunological Response against Breast Lineage Cells Transfected with Human Papillomavirus (HPV)
by Daffany Luana Santos, Bianca de França São Marcos, Georon Ferreira de Sousa, Leonardo Carvalho de Oliveira Cruz, Bárbara Rafaela da Silva Barros, Mariane Cajuba de Britto Lira Nogueira, Talita Helena de Araújo Oliveira, Anna Jessica Duarte Silva, Vanessa Emanuelle Pereira Santos, Cristiane Moutinho Lagos de Melo and Antonio Carlos de Freitas
Viruses 2024, 16(5), 717; https://doi.org/10.3390/v16050717 - 30 Apr 2024
Cited by 3 | Viewed by 2042
Abstract
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus’s activity against this type of cancer remains controversial. HPV infection [...] Read more.
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus’s activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host’s immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes. Full article
(This article belongs to the Special Issue Immune Responses to Papillomavirus Infections)
Show Figures

Figure 1

11 pages, 2588 KiB  
Article
Organic Electrochemical Transistors as Versatile Tool for Real-Time and Automatized Viral Cytopathic Effect Evaluation
by Francesco Decataldo, Catia Giovannini, Laura Grumiro, Maria Michela Marino, Francesca Faccin, Martina Brandolini, Giorgio Dirani, Francesca Taddei, Davide Lelli, Marta Tessarolo, Maria Calienni, Carla Cacciotto, Alessandra Mistral De Pascali, Antonio Lavazza, Beatrice Fraboni, Vittorio Sambri and Alessandra Scagliarini
Viruses 2022, 14(6), 1155; https://doi.org/10.3390/v14061155 - 26 May 2022
Cited by 6 | Viewed by 2948
Abstract
In-vitro viral studies are still fundamental for biomedical research since studying the virus kinetics on cells is crucial for the determination of the biological properties of viruses and for screening the inhibitors of infections. Moreover, testing potential viral contaminants is often mandatory for [...] Read more.
In-vitro viral studies are still fundamental for biomedical research since studying the virus kinetics on cells is crucial for the determination of the biological properties of viruses and for screening the inhibitors of infections. Moreover, testing potential viral contaminants is often mandatory for safety evaluation. Nowadays, viral cytopathic effects are mainly evaluated through end-point assays requiring dye-staining combined with optical evaluation. Recently, optical-based automatized equipment has been marketed, aimed at the real-time screening of cell-layer status and obtaining further insights, which are unavailable with end-point assays. However, these technologies present two huge limitations, namely, high costs and the possibility to study only cytopathic viruses, whose effects lead to plaque formation and layer disruption. Here, we employed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (Pedot:Pss) organic electrochemical transistors (OECTs) for the real-time, electrical monitoring of the infection of cytolytic viruses, i.e., encephalomyocarditis virus (EMCV), and non-cytolytic viruses, i.e., bovine coronavirus (B-CoV), on cells. OECT data on EMCV were validated using a commercially-available optical-based technology, which, however, failed in the B-CoV titration analysis, as expected. The OECTs proved to be reliable, fast, and versatile devices for viral infection monitoring, which could be scaled up at low cost, reducing the operator workload and speeding up in-vitro assays in the biomedical research field. Full article
(This article belongs to the Special Issue An Interdisciplinary Approach to Virology Research)
Show Figures

Figure 1

15 pages, 1014 KiB  
Article
Cytolytic Recombinant Vesicular Stomatitis Viruses Expressing STLV-1 Receptor Specifically Eliminate STLV-1 Env-Expressing Cells in an HTLV-1 Surrogate Model In Vitro
by Yohei Seki, Tomoya Kitamura, Kenta Tezuka, Megumi Murata, Hirofumi Akari, Isao Hamaguchi and Kazu Okuma
Viruses 2022, 14(4), 740; https://doi.org/10.3390/v14040740 - 31 Mar 2022
Viewed by 2655
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes serious and intractable diseases in some carriers after infection. The elimination of infected cells is considered important to prevent this onset, but there are currently no means by which to accomplish this. We previously developed [...] Read more.
Human T-cell leukemia virus type 1 (HTLV-1) causes serious and intractable diseases in some carriers after infection. The elimination of infected cells is considered important to prevent this onset, but there are currently no means by which to accomplish this. We previously developed “virotherapy”, a therapeutic method that targets and kills HTLV-1-infected cells using a cytolytic recombinant vesicular stomatitis virus (rVSV). Infection with rVSV expressing an HTLV-1 primary receptor elicits therapeutic effects on HTLV-1-infected envelope protein (Env)-expressing cells in vitro and in vivo. Simian T-cell leukemia virus type 1 (STLV-1) is closely related genetically to HTLV-1, and STLV-1-infected Japanese macaques (JMs) are considered a useful HTLV-1 surrogate, non-human primate model in vivo. Here, we performed an in vitro drug evaluation of rVSVs against STLV-1 as a preclinical study. We generated novel rVSVs encoding the STLV-1 primary receptor, simian glucose transporter 1 (JM GLUT1), with or without an AcGFP reporter gene. Our data demonstrate that these rVSVs specifically and efficiently infected/eliminated the STLV-1 Env-expressing cells in vitro. These results indicate that rVSVs carrying the STLV-1 receptor could be an excellent candidate for unique anti-STLV-1 virotherapy; therefore, such antivirals can now be applied to STLV-1-infected JMs to determine their therapeutic usefulness in vivo. Full article
(This article belongs to the Special Issue HTLV-1 and HTLV-1-Associated Diseases)
Show Figures

Figure 1

17 pages, 2599 KiB  
Article
Immunogenicity and Antiviral Response of Therapeutic Hepatitis B Vaccination in a Mouse Model of HBeAg-Negative, Persistent HBV Infection
by Anna D. Kosinska, Julia Festag, Martin Mück-Häusl, Marvin M. Festag, Theresa Asen and Ulrike Protzer
Vaccines 2021, 9(8), 841; https://doi.org/10.3390/vaccines9080841 - 31 Jul 2021
Cited by 11 | Viewed by 4799
Abstract
During the natural course of chronic hepatitis B virus (HBV) infection, the hepatitis B e antigen (HBeAg) is typically lost, while the direct transmission of HBeAg-negative HBV may result in fulminant hepatitis B. While the induction of HBV-specific immune responses by therapeutic vaccination [...] Read more.
During the natural course of chronic hepatitis B virus (HBV) infection, the hepatitis B e antigen (HBeAg) is typically lost, while the direct transmission of HBeAg-negative HBV may result in fulminant hepatitis B. While the induction of HBV-specific immune responses by therapeutic vaccination is a promising, novel treatment option for chronic hepatitis B, it remains unclear whether a loss of HBeAg may influence its efficacy or tolerability. We therefore generated an adeno-associated virus (AAV)-vector that carries a 1.3-fold overlength HBV genome with a typical stop-codon mutation in the pre-core region and initiates the replication of HBeAg(−) HBV in mouse livers. Infection of C57BL/6 mice established persistent HBeAg(−) HBV-replication without any detectable anti-HBV immunity or liver damage. HBV-carrier mice were immunized with TherVacB, a therapeutic hepatitis B vaccine that uses a particulate HBV S and a core protein for prime vaccination, and a modified vaccinia Ankara (MVA) for boost vaccination. The TherVacB immunization of HBeAg(+) and HBeAg(−) HBV carrier mice resulted in the effective induction of HBV-specific antibodies and the loss of HBsAg but only mild liver damage. Intrahepatic, HBV-specific CD8 T cells induced in HBeAg(−) mice expressed more IFNγ but showed similar cytolytic activity. This indicates that the loss of HBeAg improves the performance of therapeutic vaccination by enhancing non-cytolytic effector functions. Full article
(This article belongs to the Special Issue Vaccines against Hepatitis Viruses)
Show Figures

Figure 1

25 pages, 2099 KiB  
Review
Excessive Innate Immunity Steers Pathogenic Adaptive Immunity in the Development of Theiler’s Virus-Induced Demyelinating Disease
by Byung S. Kim
Int. J. Mol. Sci. 2021, 22(10), 5254; https://doi.org/10.3390/ijms22105254 - 17 May 2021
Cited by 7 | Viewed by 3886
Abstract
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune [...] Read more.
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/β plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses. Full article
Show Figures

Figure 1

13 pages, 1730 KiB  
Article
Extracellular Vesicles Released by Enterovirus-Infected EndoC-βH1 Cells Mediate Non-Lytic Viral Spread
by Eitan Netanyah, Matteo Calafatti, Jeanette Arvastsson, Eduardo Cabrera-Rode, Corrado M. Cilio and Luis Sarmiento
Microorganisms 2020, 8(11), 1753; https://doi.org/10.3390/microorganisms8111753 - 8 Nov 2020
Cited by 17 | Viewed by 3946
Abstract
While human enteroviruses are generally regarded as a lytic virus, and persistent non-cytolytic enterovirus infection in pancreatic beta cells has been suspected of playing a role in type 1 diabetes pathogenesis. However, it is still unclear how enteroviruses could exit the pancreatic beta [...] Read more.
While human enteroviruses are generally regarded as a lytic virus, and persistent non-cytolytic enterovirus infection in pancreatic beta cells has been suspected of playing a role in type 1 diabetes pathogenesis. However, it is still unclear how enteroviruses could exit the pancreatic beta cell in a non-lytic manner. This study aimed to investigate the role of beta cell-derived extracellular vesicles (EVs) in the non-lytic enteroviral spread and infection. Size-exclusion chromatography and antibody-based immunoaffinity purification were used to isolate EVs from echovirus 16-infected human beta EndoC-βH1 cells. EVs were then characterized using transmission electron microscopy and Multiplex Bead-Based Flow Cytometry Assay. Virus production and release were quantified by 50% cell culture infectious dose (CCID50) assay and qRT-PCR. Our results showed that EVs from echovirus 16-infected EndoC-βH1 cells harbor infectious viruses and promote their spread during the pre-lytic phase of infection. Furthermore, the EVs-mediated infection was not inhibited by virus-specific neutralizing antibodies. In summary, this study demonstrated that enteroviruses could exit beta cells non-lytically within infectious EVs, thereby thwarting the access of neutralizing antibodies to viral particles. These data suggest that enterovirus transmission through EVs may contribute to viral dissemination and immune evasion in persistently infected beta cells. Full article
(This article belongs to the Special Issue Enterovirus and Type 1 Diabetes)
Show Figures

Figure 1

11 pages, 608 KiB  
Review
Acute RNA Viral Encephalomyelitis and the Role of Antibodies in the Central Nervous System
by Maggie L. Bartlett and Diane E. Griffin
Viruses 2020, 12(9), 988; https://doi.org/10.3390/v12090988 - 5 Sep 2020
Cited by 6 | Viewed by 3618
Abstract
Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to [...] Read more.
Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to resolution of infection. Here, we review the RNA viruses known to cause acute viral encephalomyelitis with mechanisms of control that require antibody or ASCs. We compile the cytokines, chemokines, and surface receptors associated with ASC recruitment to the CNS after infection and compare known antibody-mediated mechanisms as well as potential noncytolytic mechanisms for virus control. These non-canonical functions of antibodies may be employed in the CNS to protect precious non-renewable neurons. Understanding the immune-specialized zone of the CNS is essential for the development of effective treatments for acute encephalomyelitis caused by RNA viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 1617 KiB  
Review
Enteroviral Pathogenesis of Type 1 Diabetes: The Role of Natural Killer Cells
by Magloire Pandoua Nekoua, Arthur Dechaumes, Famara Sane, Enagnon Kazali Alidjinou, Kabirou Moutairou, Akadiri Yessoufou and Didier Hober
Microorganisms 2020, 8(7), 989; https://doi.org/10.3390/microorganisms8070989 - 1 Jul 2020
Cited by 19 | Viewed by 4521
Abstract
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that [...] Read more.
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that NK cells response to CV-B infection play a crucial role in the enteroviral pathogenesis of T1D. Indeed, CV-B-infected cells can escape from cytotoxic T cells recognition and destruction by inhibition of cell surface expression of HLA class I antigen through non-structural viral proteins, but they can nevertheless be killed by NK cells. Cytolytic activity of NK cells towards pancreatic beta cells persistently-infected with CV-B has been reported and defective viral clearance by NK cells of patients with T1D has been suggested as a mechanism leading to persistence of CV-B and triggering autoimmunity reported in these patients. The knowledge about host antiviral defense against CV-B infection is not only crucial to understand the susceptibility to virus-induced T1D but could also contribute to the design of new preventive or therapeutic approaches for individuals at risk for T1D or newly diagnosed patients. Full article
(This article belongs to the Special Issue Enterovirus and Type 1 Diabetes)
Show Figures

Figure 1

18 pages, 4495 KiB  
Article
Rodents Versus Pig Model for Assessing the Performance of Serotype Chimeric Ad5/3 Oncolytic Adenoviruses
by Lisa Koodie, Matthew G. Robertson, Malavika Chandrashekar, George Ruth, Michele Dunning, Richard W. Bianco and Julia Davydova
Cancers 2019, 11(2), 198; https://doi.org/10.3390/cancers11020198 - 8 Feb 2019
Cited by 21 | Viewed by 4513
Abstract
Oncolytic adenoviruses (Ad) are promising tools for cancer therapeutics. Most Ad-based therapies utilize species C serotypes, with Adenovirus type 5 (Ad5) most commonly employed. Prior clinical trials demonstrated low efficiency of oncolytic Ad5 vectors, mainly due to the absence of Ad5 primary receptor [...] Read more.
Oncolytic adenoviruses (Ad) are promising tools for cancer therapeutics. Most Ad-based therapies utilize species C serotypes, with Adenovirus type 5 (Ad5) most commonly employed. Prior clinical trials demonstrated low efficiency of oncolytic Ad5 vectors, mainly due to the absence of Ad5 primary receptor (Coxsackie and Adenovirus Receptor, CAR) on cancer cells. Engineering serotype chimeric vectors (Ad5/3) to utilize Adenovirus type 3 (Ad3) receptors has greatly improved their oncolytic potential. Clinical translation of these infectivity-enhanced vectors has been challenging due to a lack of replication permissive animal models. In this study, we explored pigs as a model to study the performance of fiber-modified Ad5/3 chimeric vectors. As a control, the Ad5 fiber-unmodified virus was used. We analyzed binding, gene transfer, replication, and cytolytic ability of Ad5 and Ad5/3 in various non-human cell lines (murine, hamster, canine, porcine). Among all tested cell lines only porcine cells supported active binding and replication of Ad5/3. Syrian hamster cells supported Ad5 replication but showed no evidence of productive viral replication after infection with Ad5/3 vectors. Transduction and replication ability of Ad5/3 in porcine cells outperformed Ad5, a phenomenon often observed in human cancer cell lines. Replication of Ad5 and Ad5/3 was subsequently evaluated in vivo in immunocompetent pigs. Quantitative PCR analyses 7 days post infection revealed Ad5 and Ad5/3 DNA and replication-dependent luciferase activity in the swine lungs and spleen indicating active replication in these tissues. These studies demonstrated the flaws in using Syrian hamsters for testing serotype chimeric Ad5/3 vectors. This is the first report to validate the pig as a valuable model for preclinical testing of oncolytic adenoviruses utilizing Adenovirus type 3 receptors. We hope that these data will help to foster the clinical translation of oncolytic adenoviruses including those with Ad3 retargeted tropism. Full article
(This article belongs to the Special Issue Oncolytic Virotherapy)
Show Figures

Figure 1

17 pages, 873 KiB  
Article
The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans
by Ashish Goyal, Ruy M. Ribeiro and Alan S. Perelson
Viruses 2017, 9(11), 350; https://doi.org/10.3390/v9110350 - 18 Nov 2017
Cited by 34 | Viewed by 7753
Abstract
Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it [...] Read more.
Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection data together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. In conclusion, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell. Full article
(This article belongs to the Special Issue Mathematical Modeling of Viral Infections)
Show Figures

Graphical abstract

12 pages, 217 KiB  
Review
Control of Hepatitis B Virus by Cytokines
by Yuchen Xia and Ulrike Protzer
Viruses 2017, 9(1), 18; https://doi.org/10.3390/v9010018 - 20 Jan 2017
Cited by 105 | Viewed by 9475
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication [...] Read more.
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation. Full article
(This article belongs to the Special Issue Recent Advances in Hepatitis B Virus Research)
21 pages, 1198 KiB  
Article
Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif
by William R. Gallaher and Robert F. Garry
Viruses 2015, 7(1), 285-305; https://doi.org/10.3390/v7010285 - 20 Jan 2015
Cited by 22 | Viewed by 13582
Abstract
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) [...] Read more.
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis. Full article
(This article belongs to the Collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Show Figures

Graphical abstract

Back to TopTop