Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = non-Schmid effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1573 KiB  
Article
Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals
by Aleksander Zubelewicz and John D. Clayton
Metals 2023, 13(3), 523; https://doi.org/10.3390/met13030523 - 5 Mar 2023
Cited by 1 | Viewed by 2400
Abstract
Since the 1980s, constitutive modeling has steadily migrated from phenomenological descriptions toward approaches that are based on micromechanics considerations. Despite significant efforts, crystal plasticity remains an open field of research. Among the unresolved issues are the anomalous behavior of metals at low temperatures [...] Read more.
Since the 1980s, constitutive modeling has steadily migrated from phenomenological descriptions toward approaches that are based on micromechanics considerations. Despite significant efforts, crystal plasticity remains an open field of research. Among the unresolved issues are the anomalous behavior of metals at low temperatures and the stress upturn at extreme dynamics. This work is focused on the low-temperature responses of body-centered-cubic (bcc) metals, among them, molybdenum (Mo). At these conditions, the plastic flow strength is governed by the motion of screw dislocations. The resultant non-planarity of core structures and slip causes the following: the shear stress includes non-glide components, the Schmid law is violated, there is a tension-compression asymmetry, and the yield surface and plastic potential are clearly decoupled. We find that the behavioral complexities can be explained by atomistically resolved friction coefficients in macroscopic yield and flow. The plastic flow mechanisms establish the departure point into the follow-up analysis of yield surfaces. For example, we know that while the von Mises stress is explained based on energy considerations, we will also show that the stress has a clear geometric interpretation. Moreover, the von Mises stress is just one case within a much broader class of equivalent stresses. Possible correlations among non-Schmid effects (as represented macroscopically by friction coefficients), volume change (i.e., residual elastic dilatation) from dislocation lines, and elastic anisotropy are investigated. Extensions to the shock regime are also established. Full article
Show Figures

Figure 1

13 pages, 4429 KiB  
Article
Non-Schmid Effect on the Fracture Behavior of Tungsten
by Zhijie Li and Yinan Cui
Crystals 2023, 13(3), 417; https://doi.org/10.3390/cryst13030417 - 28 Feb 2023
Cited by 1 | Viewed by 2532
Abstract
The fracture process of tungsten is dominated by the competition mechanism between the plastic deformation and the crack propagation near the crack tip. The non-Schmid (NS) effect, which considers the contribution of non-planar shear stress on the screw dislocation motion, is known to [...] Read more.
The fracture process of tungsten is dominated by the competition mechanism between the plastic deformation and the crack propagation near the crack tip. The non-Schmid (NS) effect, which considers the contribution of non-planar shear stress on the screw dislocation motion, is known to significantly influence the plastic deformation of tungsten at low and medium temperatures. However, how the NS effect influences the crack-tip plasticity and the fracture behavior of tungsten remains to be answered. In this work, the coupled crystal-plasticity and phase-field model (CP-PFM) was adopted to study the influence of the NS effect on the plastic deformation of un-notched tungsten and the fracture process of pre-notched tungsten at different temperatures. It was found that the lower the temperature, the more significant the NS effect on tungsten plasticity, which manifests in the lower yield stress and more unsymmetrical plastic deformation when the NS effect is considered. In contrast, the NS effect displayed the most obvious effect on the fracture behavior of pre-notched tungsten in the medium temperature regime, which manifested as higher fracture stress, a more significant crack-tip shielding effect, different fracture morphology, and lower crack propagation speed. The brittle fracture response at low temperature was not affected too much by the existence of the NS effect. Full article
Show Figures

Figure 1

13 pages, 3795 KiB  
Article
Microstructural Characteristics and Subsequent Soften Mechanical Response in Transverse Direction of Wrought AZ31 with Elevated Compression Temperature
by Mengmeng Yang, Feng Zhang, Wei Yu, Yikui Bai and Zheng Liu
Materials 2021, 14(14), 4055; https://doi.org/10.3390/ma14144055 - 20 Jul 2021
Cited by 6 | Viewed by 2361
Abstract
In order to investigate the effect of temperature on the microstructure evolution and mechanical response in the transverse direction of a wrought AZ31 (AZ31-TD) alloy under a high strain rate, the dynamic compression was conducted using Split Hopkinson Pressure Bar (SHPB) apparatus and [...] Read more.
In order to investigate the effect of temperature on the microstructure evolution and mechanical response in the transverse direction of a wrought AZ31 (AZ31-TD) alloy under a high strain rate, the dynamic compression was conducted using Split Hopkinson Pressure Bar (SHPB) apparatus and a resistance-heated furnace under 1000 s−1 at 20–250 °C. By combining optical and EBSD observations, the microstructure’s evolution was specifically analyzed. With the help of theoretically calculated Schmid Factors (SF) and Critical Resolved Shear Stress (CRSS), the activation and development deformation mechanisms are systematically discussed in the current study. The results demonstrated that the stress–strain curves are converted from a sigmoidal curve to a concave-down curve, which is caused by the preferentially and main deformation mechanism {101¯2} tension twinning gradually converting to simultaneously exist with the deformation mechanism of a non-basal slip at an elevated temperature, then completing with each other. Finally, the dynamic recrystallization (DRX) and non-basal slip are largely activated and enhanced by temperature elevated to weaken the {101¯2} tension twinning. Full article
(This article belongs to the Special Issue Study on the Development and Applications of Magnesium Alloys)
Show Figures

Figure 1

22 pages, 5397 KiB  
Article
In Situ Characterization of the Effect of Twin-Microstructure Interactions on {1 0 1 2} Tension and {1 0 1 1} Contraction Twin Nucleation, Growth and Damage in Magnesium
by William D. Russell, Nicholas R. Bratton, YubRaj Paudel, Robert D. Moser, Zackery B. McClelland, Christopher D. Barrett, Andrew L. Oppedal, Wilburn R. Whittington, Hongjoo Rhee, Shiraz Mujahid, Bhasker Paliwal, Sven C. Vogel and Haitham El Kadiri
Metals 2020, 10(11), 1403; https://doi.org/10.3390/met10111403 - 22 Oct 2020
Cited by 21 | Viewed by 3917
Abstract
Through in situ electron backscatter diffraction (EBSD) experiments, this paper uncovers dominant damage mechanisms in traditional magnesium alloys exhibiting deformation twinning. The findings emphasize the level of deleterious strain incompatibility induced by twin interaction with other deformation modes and microstructural defects. A double [...] Read more.
Through in situ electron backscatter diffraction (EBSD) experiments, this paper uncovers dominant damage mechanisms in traditional magnesium alloys exhibiting deformation twinning. The findings emphasize the level of deleterious strain incompatibility induced by twin interaction with other deformation modes and microstructural defects. A double fiber obtained by plane-strain extrusion as a starting texture of AM30 magnesium alloy offered the opportunity to track deformation by EBSD in neighboring grains where some undergo profuse {1 0 1 2} twinning and others do not. For a tensile loading applied along extrusion transverse (ET) direction, those experiencing profuse twinning reveal a major effect of grain boundaries on non-Schmid behavior affecting twin variant selection and growth. Similarly, a neighboring grain, with its ⟨c⟩-axis oriented nearly perpendicular to tensile loading, showed an abnormally early nucleation of {1 0 1 1} contraction twins (2% strain) while the same {1 0 1 1} twin mode triggering under ⟨c⟩-axis uniaxial compression have higher value of critical resolved shear stress exceeding the values for pyramidal ⟨c + a⟩ dislocations. The difference in nucleation behavior of contraction vs. compression {1 0 1 1} twins is attributed to the hydrostatic stresses that promote the required atomic shuffles at the core of twinning disconnections. Full article
Show Figures

Graphical abstract

17 pages, 8482 KiB  
Review
Pathophysiological Implication of Fetuin-A Glycoprotein in the Development of Metabolic Disorders: A Concise Review
by Lynda Bourebaba and Krzysztof Marycz
J. Clin. Med. 2019, 8(12), 2033; https://doi.org/10.3390/jcm8122033 - 21 Nov 2019
Cited by 82 | Viewed by 9819
Abstract
Alpha 2-Heremans-Schmid glycoprotein, also known as fetuin-A (Fet-A), is a multifunctional plasma glycoprotein that has been identified in both animal and human beings. The protein is a hepatokine predominantly synthesized in the liver, which is considered as an important component of diverse normal [...] Read more.
Alpha 2-Heremans-Schmid glycoprotein, also known as fetuin-A (Fet-A), is a multifunctional plasma glycoprotein that has been identified in both animal and human beings. The protein is a hepatokine predominantly synthesized in the liver, which is considered as an important component of diverse normal and pathological processes, including bone metabolism regulation, vascular calcification, insulin resistance, and protease activity control. Epidemiological studies have already consistently demonstrated significant elevated circulating Fet-A in the course of obesity and related complications, such as type 2 diabetes mellitus, metabolic syndrome, and nonalcoholic fatty liver disorder (NAFLD). Moreover, Fet-A has been strongly correlated with many parameters related to metabolic homeostasis dysregulation, such as insulin sensitivity, glucose tolerance, circulating lipid levels (non-esterified free fatty acids and triglycerides), and circulating levels of both pro- and anti-inflammatory factors (C-reactive protein, tumor necrosis factor-α (TNF-α), and interleukin (IL)-6). Metabolic-interfering effects of Fet-A have thus been shown to highly exacerbate insulin resistance (IR) through blocking insulin-stimulated glucose transporter 4 (GLUT-4) translocation and protein kinase B (Akt) activation. Furthermore, the protein appeared to interfere with downstream phosphorylation events in insulin receptor and insulin receptor substrate signaling. The emerging importance of Fet-A for both diagnosis and therapeutics has therefore come to the attention of researchers and the pharmaceutical industry, in the prospect of developing new therapeutic strategies and diagnosis methods for metabolic disorders. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

16 pages, 1711 KiB  
Article
Influence of the Non-Schmid Effects on the Ductility Limit of Polycrystalline Sheet Metals
by Mohamed Ben Bettaieb and Farid Abed-Meraim
Materials 2018, 11(8), 1386; https://doi.org/10.3390/ma11081386 - 8 Aug 2018
Cited by 2 | Viewed by 3324
Abstract
The yield criterion in rate-independent single crystal plasticity is most often defined by the classical Schmid law. However, various experimental studies have shown that the plastic flow of several single crystals (especially with Body Centered Cubic crystallographic structure) often exhibits some non-Schmid effects. [...] Read more.
The yield criterion in rate-independent single crystal plasticity is most often defined by the classical Schmid law. However, various experimental studies have shown that the plastic flow of several single crystals (especially with Body Centered Cubic crystallographic structure) often exhibits some non-Schmid effects. The main objective of the current contribution is to study the impact of these non-Schmid effects on the ductility limit of polycrystalline sheet metals. To this end, the Taylor multiscale scheme is used to determine the mechanical behavior of a volume element that is assumed to be representative of the sheet metal. The mechanical behavior of the single crystals is described by a finite strain rate-independent constitutive theory, where some non-Schmid effects are accounted for in the modeling of the plastic flow. The bifurcation theory is coupled with the Taylor multiscale scheme to predict the onset of localized necking in the polycrystalline aggregate. The impact of the considered non-Schmid effects on both the single crystal behavior and the polycrystal behavior is carefully analyzed. It is shown, in particular, that non-Schmid effects tend to precipitate the occurrence of localized necking in polycrystalline aggregates and they slightly influence the orientation of the localization band. Full article
(This article belongs to the Special Issue Design of Alloy Metals for Low-Mass Structures)
Show Figures

Figure 1

22 pages, 3010 KiB  
Article
Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework
by Shahriyar Keshavarz, Zara Molaeinia, Andrew Reid and Stephen Langer
Crystals 2017, 7(11), 334; https://doi.org/10.3390/cryst7110334 - 2 Nov 2017
Cited by 9 | Viewed by 5981
Abstract
This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design [...] Read more.
This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM) of the representative volume element (RVE) with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys. Full article
(This article belongs to the Special Issue Crystal Dislocations: Their Impact on Physical Properties of Crystals)
Show Figures

Figure 1

Back to TopTop