Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = nibrin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2103 KiB  
Article
Plasma Proteomics of Type 2 Diabetes, Hypertension, and Co-Existing Diabetes/Hypertension in Thai Adults
by Puriwat Fakfum, Hataichanok Chuljerm, Wason Parklak, Sittiruk Roytrakul, Narumon Phaonakrop, Peerasak Lerttrakarnnon and Kanokwan Kulprachakarn
Life 2024, 14(10), 1269; https://doi.org/10.3390/life14101269 - 5 Oct 2024
Cited by 1 | Viewed by 1703
Abstract
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 [...] Read more.
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 with T2DM (mean age = 57.38 ± 6.03), 16 with HT (mean age = 66.87 ± 10.09), and 18 with coexisting T2DM/HT (mean age = 58.22 ± 10.65). Proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein–protein interactions were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 11.5. We identified six unique proteins in T2DM patients, including translationally controlled 1 (TPT1) and nibrin (NBN), which are associated with the DNA damage response. In HT patients, seven unique proteins were identified, among them long-chain fatty acid-CoA ligase (ASCL), which functions in the stimulation of triacylglycerol and cholesterol synthesis, and NADPH oxidase activator 1 (NOXA1), which is involved in high blood pressure via angiotensin II-induced reactive oxygen species (ROS)-generating systems. In coexisting T2DM/HT patients, six unique proteins were identified, of which two—microtubule-associated protein 1A (MAP1A)—might be involved in dementia via RhoB-p53 and diacylglycerol kinase beta (DGKB), associated with lipid metabolism. This study identified new candidate proteins that are possibly involved in the pathology of these diseases. Full article
(This article belongs to the Special Issue Alterations of the Metabolic Homeostasis in Aging)
Show Figures

Figure 1

10 pages, 2284 KiB  
Hypothesis
Microsatellite Instability and Aberrant Pre-mRNA Splicing: How Intimate Is It?
by Laurent Corcos, Enora Le Scanf, Gaël Quéré, Danielle Arzur, Gwennina Cueff, Catherine Le Jossic-Corcos and Cédric Le Maréchal
Genes 2023, 14(2), 311; https://doi.org/10.3390/genes14020311 - 25 Jan 2023
Cited by 1 | Viewed by 2326
Abstract
Cancers that belong to the microsatellite instability (MSI) class can account for up to 15% of all cancers of the digestive tract. These cancers are characterized by inactivation, through the mutation or epigenetic silencing of one or several genes from the DNA MisMatch [...] Read more.
Cancers that belong to the microsatellite instability (MSI) class can account for up to 15% of all cancers of the digestive tract. These cancers are characterized by inactivation, through the mutation or epigenetic silencing of one or several genes from the DNA MisMatch Repair (MMR) machinery, including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 and Exo1. The unrepaired DNA replication errors turn into mutations at several thousand sites that contain repetitive sequences, mainly mono- or dinucleotides, and some of them are related to Lynch syndrome, a predisposition condition linked to a germline mutation in one of these genes. In addition, some mutations shortening the microsatellite (MS) stretch could occur in the 3′-intronic regions, i.e., in the ATM (ATM serine/threonine kinase), MRE11 (MRE11 homolog) or the HSP110 (Heat shock protein family H) genes. In these three cases, aberrant pre-mRNA splicing was observed, and it was characterized by the occurrence of selective exon skipping in mature mRNAs. Because both the ATM and MRE11 genes, which as act as players in the MNR (MRE11/NBS1 (Nibrin)/RAD50 (RAD50 double strand break repair protein) DNA damage repair system, participate in double strand breaks (DSB) repair, their frequent splicing alterations in MSI cancers lead to impaired activity. This reveals the existence of a functional link between the MMR/DSB repair systems and the pre-mRNA splicing machinery, the diverted function of which is the consequence of mutations in the MS sequences. Full article
(This article belongs to the Special Issue Reciprocal Links between RNA Metabolism and DNA Damage)
Show Figures

Figure 1

13 pages, 1531 KiB  
Article
Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients
by Verena Lieb, Amer Abdulrahman, Katrin Weigelt, Siegfried Hauch, Michael Gombert, Juan Guzman, Laura Bellut, Peter J. Goebell, Robert Stöhr, Arndt Hartmann, Bernd Wullich, Helge Taubert and Sven Wach
Cells 2022, 11(22), 3618; https://doi.org/10.3390/cells11223618 - 15 Nov 2022
Cited by 1 | Viewed by 2156
Abstract
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to [...] Read more.
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to their clinical pathological significance (CPS) or their functional impact (FI) in 23 DNA damage repair (DDR) genes with a focus on the ATM serine/threonine kinase gene (ATM). All patients had at least one DDR gene with a CPS or FI variant. Kaplan-Meier analysis indicated that the group with a higher number of CPS variants in DDR genes had a shorter time to treatment change (TTC) compared to the group with a lower number of CPS variants (p = 0.038). Analysis of each DDR gene revealed that CPS variants in the ATM gene and FI variants in the nibrin (NBN) gene showed a shorter TTC (p = 0.034 and p = 0.042). In addition, patients with CPS variants in the ATM gene had shorter overall survival (OS; p = 0.022) and disease-specific survival (DSS; p = 0.010) than patients without these variants. Interestingly, patients with CPS variants in seven DDR genes possessed a better OS (p = 0.008) and DSS (p = 0.009), and patients with FI variants in four DDR genes showed a better OS (p = 0.007) and DSS (p = 0.008). Together, these findings demonstrated that the analysis of cfDNA for gene variants in DDR genes provides prognostic information that may be helpful for future temporal and targeted treatment decisions for advanced PCa patients. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Prostate Cancer)
Show Figures

Figure 1

24 pages, 4592 KiB  
Article
Impaired p53-Mediated DNA Damage Response Contributes to Microcephaly in Nijmegen Breakage Syndrome Patient-Derived Cerebral Organoids
by Soraia Martins, Lars Erichsen, Angeliki Datsi, Wasco Wruck, Wolfgang Goering, Eleftheria Chatzantonaki, Vanessa Cristina Meira de Amorim, Andrea Rossi, Krystyna H. Chrzanowska and James Adjaye
Cells 2022, 11(5), 802; https://doi.org/10.3390/cells11050802 - 25 Feb 2022
Cited by 14 | Viewed by 3743
Abstract
Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed [...] Read more.
Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed induced pluripotent stem cell-derived cerebral organoids from two NBS patients to study the etiology of microcephaly. We show that NBS organoids carrying the homozygous 657del5 NBN mutation are significantly smaller with disrupted cyto-architecture. The organoids exhibit premature differentiation, and Neuronatin (NNAT) over-expression. Furthermore, pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. After exposure to bleomycin, NBS organoids undergo delayed p53-mediated DNA damage response and aberrant trans-synaptic signaling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders. Full article
(This article belongs to the Special Issue iPS Cells (iPSCs) for Modelling and Treatment of Human Diseases)
Show Figures

Figure 1

15 pages, 1862 KiB  
Article
Detecting Variants in the NBN Gene While Testing for Hereditary Breast Cancer: What to Do Next?
by Roberta Zuntini, Elena Bonora, Laura Maria Pradella, Laura Benedetta Amato, Michele Vidone, Sara De Fanti, Irene Catucci, Laura Cortesi, Veronica Medici, Simona Ferrari, Giuseppe Gasparre, Paolo Peterlongo, Marco Sazzini and Daniela Turchetti
Int. J. Mol. Sci. 2021, 22(11), 5832; https://doi.org/10.3390/ijms22115832 - 29 May 2021
Cited by 15 | Viewed by 5126
Abstract
The NBN gene has been included in breast cancer (BC) multigene panels based on early studies suggesting an increased BC risk for carriers, though not confirmed by recent research. To evaluate the impact of NBN analysis, we assessed the results of NBN sequencing [...] Read more.
The NBN gene has been included in breast cancer (BC) multigene panels based on early studies suggesting an increased BC risk for carriers, though not confirmed by recent research. To evaluate the impact of NBN analysis, we assessed the results of NBN sequencing in 116 BRCA-negative BC patients and reviewed the literature. Three patients (2.6%) carried potentially relevant variants: two, apparently unrelated, carried the frameshift variant c.156_157delTT and another one the c.628G>T variant. The latter was subsequently found in 4/1390 (0.3%) BC cases and 8/1580 (0.5%) controls in an independent sample, which, together with in silico predictions, provided evidence against its pathogenicity. Conversely, the rare c.156_157delTT variant was absent in the case-control set; moreover, a 50% reduction of NBN expression was demonstrated in one carrier. However, in one family it failed to co-segregate with BC, while the other carrier was found to harbor also a probably pathogenic TP53 variant that may explain her phenotype. Therefore, the c.156_157delTT, although functionally deleterious, was not supported as a cancer-predisposing defect. Pathogenic/likely pathogenic NBN variants were detected by multigene panels in 31/12314 (0.25%) patients included in 15 studies. The risk of misinterpretation of such findings is substantial and supports the exclusion of NBN from multigene panels. Full article
(This article belongs to the Special Issue Molecular Advances in Cancer Genetics)
Show Figures

Figure 1

Back to TopTop