Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = new type thermal power enterprises

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1437 KB  
Review
Review of the Mitigation Scale Performance of Anti-Fouling Coatings Surface Characteristics on Industrial Heat Exchange Surfaces
by Zhaorong He, Weiqi Lian, Yunrong Lv, Zhihong Duan and Zhiqing Fan
Coatings 2026, 16(1), 40; https://doi.org/10.3390/coatings16010040 - 31 Dec 2025
Viewed by 364
Abstract
Industrial heat exchangers are widely used in industries such as petrochemicals, energy and power, and food processing, making them one of the most important pieces of heat and mass transfer equipment in industry. During operation, a layer of fouling often adheres to the [...] Read more.
Industrial heat exchangers are widely used in industries such as petrochemicals, energy and power, and food processing, making them one of the most important pieces of heat and mass transfer equipment in industry. During operation, a layer of fouling often adheres to the heat transfer surfaces, which reduces the heat transfer coefficient of the equipment and increases the thermal resistance of the surfaces. Additionally, fouling can corrode the material of the heat transfer surfaces, compromise their integrity, and even lead to perforations and leaks, severely impacting equipment operation and safety while increasing energy consumption and costs for enterprises. The application of anti-fouling coatings on surfaces is a key technology to address fouling on heat transfer surfaces. This paper focuses on introducing major types of anti-fouling coatings, including polymer-based coatings, “metal material + X”-type coatings, “inorganic material + X”-type coatings, carbon-based material coatings, and other varieties. It analyzes and discusses the current research status and hotspots for these coatings, elaborates on their future development directions, and proposes ideas for developing new coating systems. On the other hand, this paper summarizes the current research on the main factors—surface roughness, surface free energy, surface wettability, and coating corrosion resistance—that affect the anti-fouling performance of coatings. It outlines the research hotspots and challenges in understanding the influence of these three factors and suggests that future research should consider the synergistic effects of multiple factors, providing valuable insights for further studies in the field of anti-fouling coatings. Full article
Show Figures

Figure 1

23 pages, 3036 KB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Cited by 1 | Viewed by 938
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

18 pages, 1015 KB  
Article
Environmental Performance Evaluation of New Type Thermal Power Enterprises Considering Carbon Peak and Neutrality
by Tao Li, Yunfen Guo, Liqi Yi and Tian Gao
Sustainability 2022, 14(7), 3734; https://doi.org/10.3390/su14073734 - 22 Mar 2022
Cited by 9 | Viewed by 2821
Abstract
Starting from the definition of traditional thermal power generation enterprises, this paper defines thermal power enterprises that are committed to achieving the carbon peak and neutrality by developing new energy sources as new type thermal power enterprises. Considering that China’s current environmental management [...] Read more.
Starting from the definition of traditional thermal power generation enterprises, this paper defines thermal power enterprises that are committed to achieving the carbon peak and neutrality by developing new energy sources as new type thermal power enterprises. Considering that China’s current environmental management and environmental performance evaluation mainly focus on the treatment of pollutants in terms of prevention and control, an indicator system that comprehensively considers the whole process of environmental management of power generation enterprises has been constructed, and the factors affecting the environmental performance of enterprises have been effectively identified. The factor analysis method comprehensively evaluates the environmental performance of China’s new type thermal power enterprises, realizes the comparability of environmental performance among power generation enterprises, and enables stakeholders such as the government and the public to conduct supervision in a timely, accurate, and comprehensive manner. In addition, it is the first time to combine the environmental performance evaluation with the carbon peak and neutrality and introduce the carbon reduction capability evaluation indicator into the indicator system, which enriches the practical significance of the environmental performance of power generation enterprises. Full article
Show Figures

Figure 1

Back to TopTop