Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = neurotoxin/enterotoxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2538 KB  
Article
Insights into the Protein–Lipid Interaction of Perivitellin-2, an Unusual Snail Pore-Forming Toxin
by Romina F. Vázquez, M. Antonieta Daza Millone, Matías L. Giglio, Tabata R. Brola, Sabina M. Maté and Horacio Heras
Toxins 2025, 17(4), 183; https://doi.org/10.3390/toxins17040183 - 6 Apr 2025
Viewed by 1469
Abstract
The perivitellin-2 (PV2) from snails is an unusual neuro and enterotoxin comprising a pore-forming domain of the Membrane Attack Complex and Perforin Family (MACPF) linked to a lectin. While both domains have membrane binding capabilities, PV2’s mechanism of action remains unclear. We studied [...] Read more.
The perivitellin-2 (PV2) from snails is an unusual neuro and enterotoxin comprising a pore-forming domain of the Membrane Attack Complex and Perforin Family (MACPF) linked to a lectin. While both domains have membrane binding capabilities, PV2’s mechanism of action remains unclear. We studied the apple snail Pomacea maculata PV2’s (PmPV2’s) interaction with lipid membranes using various biophysical and cell biology approaches. In vitro studies showed that PmPV2 toxicity decreased when cholesterol (Chol) was diminished from enterocyte cell membranes. Chol enhanced PmPV2 association with phosphatidylcholine membranes but did not induce pore formation. In contrast, using rat brain lipid models, rich in glycolipids, PmPV2 exhibited high affinity and induced vesicle permeabilization. Negative stain electron microscopy and atomic force microscopy confirmed the formation of pore-like structures in brain lipid vesicles. Our findings suggest that Chol is a necessary lipid component and point to PmPV2–glycolipid interactions as potential activators critical to triggering PmPV2’s pore-forming activity, providing insights into this novel toxin’s mechanism. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

46 pages, 7856 KB  
Review
Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution
by Michel R. Popoff
Toxins 2024, 16(4), 182; https://doi.org/10.3390/toxins16040182 - 8 Apr 2024
Cited by 13 | Viewed by 13319
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based [...] Read more.
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed. Full article
(This article belongs to the Special Issue Toxins: 15th Anniversary)
Show Figures

Figure 1

32 pages, 3060 KB  
Review
Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins
by Christopher Pöhlmann and Thomas Elßner
Toxins 2020, 12(11), 727; https://doi.org/10.3390/toxins12110727 - 20 Nov 2020
Cited by 28 | Viewed by 7739
Abstract
Biological toxins are a heterogeneous group of high molecular as well as low molecular weight toxins produced by living organisms. Due to their physical and logistical properties, biological toxins are very attractive to terrorists for use in acts of bioterrorism. Therefore, among the [...] Read more.
Biological toxins are a heterogeneous group of high molecular as well as low molecular weight toxins produced by living organisms. Due to their physical and logistical properties, biological toxins are very attractive to terrorists for use in acts of bioterrorism. Therefore, among the group of biological toxins, several are categorized as security relevant, e.g., botulinum neurotoxins, staphylococcal enterotoxins, abrin, ricin or saxitoxin. Additionally, several security sensitive toxins also play a major role in natural food poisoning outbreaks. For a prompt response to a potential bioterrorist attack using biological toxins, first responders need reliable, easy-to-use and highly sensitive methodologies for on-site detection of the causative agent. Therefore, the aim of this review is to present on-site immunoassay platforms for multiplex detection of biological toxins. Furthermore, we introduce several commercially available detection technologies specialized for mobile or on-site identification of security sensitive toxins. Full article
(This article belongs to the Special Issue Antibodies for Toxins: From Detection to Therapeutics)
Show Figures

Figure 1

21 pages, 5862 KB  
Review
Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health
by Reuven Rasooly, Hugh Alan Bruck, Joshua Balsam, Ben Prickril, Miguel Ossandon and Avraham Rasooly
Diagnostics 2016, 6(2), 19; https://doi.org/10.3390/diagnostics6020019 - 17 May 2016
Cited by 14 | Viewed by 9579
Abstract
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable [...] Read more.
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. Full article
(This article belongs to the Special Issue Mobile Diagnosis)
Show Figures

Graphical abstract

16 pages, 548 KB  
Article
A Bioanalytical Platform for Simultaneous Detection and Quantification of Biological Toxins
by Oliver G. Weingart, Hui Gao, François Crevoisier, Friedrich Heitger, Marc-André Avondet and Hans Sigrist
Sensors 2012, 12(2), 2324-2339; https://doi.org/10.3390/s120202324 - 21 Feb 2012
Cited by 30 | Viewed by 11938
Abstract
Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of [...] Read more.
Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin’s identity and concentration. The system’s performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5–1 ng·mL−1 in buffer or in raw milk. Full article
(This article belongs to the Special Issue Bioassays)
Show Figures

Graphical abstract

52 pages, 1199 KB  
Review
Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review
by Elisabete Valério, Sandra Chaves and Rogério Tenreiro
Toxins 2010, 2(10), 2359-2410; https://doi.org/10.3390/toxins2102359 - 18 Oct 2010
Cited by 83 | Viewed by 22618
Abstract
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create [...] Read more.
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed. Full article
(This article belongs to the Special Issue Toxins from Aquatic Organisms)
Show Figures

Graphical abstract

55 pages, 997 KB  
Review
Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells
by Michel R. Popoff and Bernard Poulain
Toxins 2010, 2(4), 683-737; https://doi.org/10.3390/toxins2040683 - 15 Apr 2010
Cited by 99 | Viewed by 23135
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types [...] Read more.
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons. Full article
(This article belongs to the Special Issue Neurotoxins of Biological Origin)
Show Figures

Figure 1

Back to TopTop