Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = necrotoxigenic E. coli (NTEC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 242 KiB  
Communication
In Vitro Antibacterial Activity of Essential Oils from Origanum vulgare, Satureja montana, Thymus vulgaris, and Their Blend Against Necrotoxigenic (NTEC), Enteropathogenic (EPEC), and Shiga-Toxin Producing Escherichia coli (STEC) Isolates
by Giulia Cagnoli, Fabrizio Bertelloni and Valentina Virginia Ebani
Pathogens 2024, 13(12), 1077; https://doi.org/10.3390/pathogens13121077 - 8 Dec 2024
Cited by 1 | Viewed by 1128
Abstract
Enteropathogenic (EPEC), necrotoxigenic (NTEC), and Shiga-toxin producing Escherichia coli (STEC) are pathotypes responsible for severe clinical forms in humans and animals. They can be shed in the feces of animals with consequent environmental contamination. This study evaluated the antibacterial activity of essential oils [...] Read more.
Enteropathogenic (EPEC), necrotoxigenic (NTEC), and Shiga-toxin producing Escherichia coli (STEC) are pathotypes responsible for severe clinical forms in humans and animals. They can be shed in the feces of animals with consequent environmental contamination. This study evaluated the antibacterial activity of essential oils (EOs) from oregano (Origanum vulgare), savory (Satureja montana), thyme (Thymus vulgaris), and their blend against EPEC, NTEC, and STEC strains previously isolated from avian fecal samples. Minimum inhibitory concentration values between 0.039% and 0.156% were found with O. vulgare EO, between ≤0.0195% and 0.156% with both S. montana and T. vulgaris EOs, and between 0.039% and ≤0.0195% with the blend. The mixture with equal parts of EOs from oregano, savory and thyme seems a promising alternative product to combat pathogenic E. coli strains responsible for environmental contamination. Full article
(This article belongs to the Section Bacterial Pathogens)
15 pages, 486 KiB  
Article
Antimicrobial Resistance and Pathotypes of Escherichia coli Isolates from Yellow-Legged Seagulls (Larus michahellis) in Central Italy
by Giulia Cagnoli, Fabrizio Bertelloni, Renato Ceccherelli and Valentina Virginia Ebani
Animals 2024, 14(21), 3048; https://doi.org/10.3390/ani14213048 - 22 Oct 2024
Viewed by 1498
Abstract
Seagulls are synanthropic wild birds that can contaminate, through their droppings, beaches, urban and peri-urban environments. This concern is more serious when seagulls eliminate antimicrobial-resistant pathogenic bacteria. This study analyzed the fecal samples from 137 yellow-legged seagulls (Larus michahellis) from Central [...] Read more.
Seagulls are synanthropic wild birds that can contaminate, through their droppings, beaches, urban and peri-urban environments. This concern is more serious when seagulls eliminate antimicrobial-resistant pathogenic bacteria. This study analyzed the fecal samples from 137 yellow-legged seagulls (Larus michahellis) from Central Italy. A total of 218 Escherichia coli strains were isolated and analyzed for phenotypic and genotypic antimicrobial resistance and to identify the virulence genes characterizing different pathotypes. The disk diffusion method on all isolates found relevant resistance rates to ampicillin (38.99%), tetracycline (23.85%), and enrofloxacin (21.10%). On the basis of all results obtained with this test, 62 (28.44%) isolates were classified as multidrug-resistant (MDR) and 6 (2.75%) as extensive drug-resistant (XDR). Molecular analyses conducted on the strains phenotypically resistant to carbapenems, cephalosporins, and penicillins found 9/37 (24.32%) strains positive for blaOXA-48, 52/103 (50.49%) for blaTEM, 12/103 (11.65%) for blaCMY2, 3/103 (2.91%) for blaCTX, and 1/103 (0.97%,) for blaSHV. PCR to detect virulence genes characterizing different pathotypes found that 40 (18.35%) isolates had the astA gene, indicative of the enteroaggregative (EAEC) pathotype, 2 (0.92%) had cnf1, 2 (0.92%) had cnf2, and 1 (0.46%) had cdt-IV. All five (2.29%) strains were reportable as necrotoxigenic (NTEC), while 4 (1.83%) had both eaeA and escV, reportable as enteropathogenic (EPEC). Measures to limit seagulls’ access where humans and other animals reside are pivotal to reduce the risk of infection with antimicrobial-resistant and pathogenetic E. coli strains. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

13 pages, 594 KiB  
Article
Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains
by Domonkos Sváb, Zoltán Somogyi, István Tóth, Joseph Marina, Shantymol V. Jose, John Jeeba, Anas Safna, Judit Juhász, Péter Nagy, Ahmed Mohamed Taha Abdelnassir, Ahmed Abdelrhman Ismail and László Makrai
Trop. Med. Infect. Dis. 2024, 9(6), 123; https://doi.org/10.3390/tropicalmed9060123 - 23 May 2024
Viewed by 2531
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of causing various systemic infections in both humans and animals. In this study, we isolated and characterized 30 E. coli strains from the parenchymatic organs and brains of young (<3 months of age) camel calves [...] Read more.
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of causing various systemic infections in both humans and animals. In this study, we isolated and characterized 30 E. coli strains from the parenchymatic organs and brains of young (<3 months of age) camel calves which died in septicemia. Six of the strains showed hypermucoviscous phenotype. Based on minimum inhibitory concentration (MIC) values, seven of the strains were potentially multidrug resistant, with two additional showing colistin resistance. Four strains showed mixed pathotypes, as they carried characteristic virulence genes for intestinal pathotypes of E. coli: three strains carried cnf1, encoding cytotoxic necrotizing factor type 1, the key virulence gene of necrotoxigenic E. coli (NTEC), and one carried eae encoding intimin, the key virulence gene of enteropathogenic E. coli (EPEC). An investigation of the integration sites of pathogenicity islands (PAIs) and the presence of prophage-related sequences showed that the strains carry diverse arrays of mobile genetic elements, which may contribute to their antimicrobial resistance and virulence patterns. Our work is the first to describe ExPEC strains from camels, and points to their veterinary pathogenic as well as zoonotic potential in this important domestic animal. Full article
(This article belongs to the Special Issue Foodborne Zoonotic Bacterial Infections)
Show Figures

Figure 1

12 pages, 1108 KiB  
Article
Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay
by Magalí Fernández, María Laura Casaux, Martín Fraga, Rafael Vignoli, Inés Bado, Pablo Zunino and Ana Umpiérrez
Microorganisms 2023, 11(7), 1704; https://doi.org/10.3390/microorganisms11071704 - 29 Jun 2023
Cited by 5 | Viewed by 2250
Abstract
In Uruguay, the mortality of dairy calves due to infectious diseases is high. Escherichia coli is a natural inhabitant of the intestinal microbiota, but can cause several infections. The aim of the work was to characterize E. coli isolates from intestinal and extraintestinal [...] Read more.
In Uruguay, the mortality of dairy calves due to infectious diseases is high. Escherichia coli is a natural inhabitant of the intestinal microbiota, but can cause several infections. The aim of the work was to characterize E. coli isolates from intestinal and extraintestinal origin of dead newborn calves. Using PCR, virulence gene characteristics of pathogenic E. coli were searched. The pathogenic E. coli were molecularly characterized and the phylogroup, serogroup and the Stx subtype were determined. Antibiotic susceptibility was determined using the Kirby–Bauer disk diffusion method and plasmid-mediated quinolone resistance (PMQR) genes with PCR. Finally, clonal relationships were inferred using PFGE. Gene characteristics of the Shiga toxin-producing E. coli (STEC), Enteropathogenic E. coli (EPEC) and Necrotoxigenic E. coli (NTEC) were identified. The prevalence of the iucD, afa8E, f17, papC, stx1, eae and ehxA genes was high and no f5, f41, saa, sfaDE, cdtIV, lt, sta or stx2 were detected. The prevalence of STEC gene stx1 in the dead calves stood out and was higher compared with previous studies conducted in live calves, and STEC LEE+ (Enterohemorrhagic E. coli (EHEC)) isolates with stx1/eae/ehxA genotypes were more frequently identified in the intestinal than in the extraintestinal environment. E. coli isolates were assigned to phylogroups A, B1, D and E, and some belonged to the O111 serogroup. stx1a and stx1c subtypes were determined in STEC. A high prevalence of multi-resistance among STEC and qnrB genes was determined. The PFGE showed a high diversity of pathogenic strains with similar genetic profiles. It can be speculated that EHEC (stx1/eae/ehxA) could play an important role in mortality. The afa8E, f17G1 and papC genes could also have a role in calf mortality. Multidrug resistance defies disease treatment and increases the risk of death, while the potential transmissibility of genes to other species constitutes a threat to public health. Full article
Show Figures

Figure 1

Back to TopTop