Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ncCuAg coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8614 KiB  
Article
Electrochemical Synthesis of Nanocrystalline CuAg Coatings on Stainless Steel from Cyanide-Free Electrolyte
by Manal A. El Sayed, Magdy A. M. Ibrahim, Nahla T. Elazab and Malek Gassoumi
Processes 2022, 10(10), 2134; https://doi.org/10.3390/pr10102134 - 20 Oct 2022
Cited by 5 | Viewed by 2438
Abstract
Herein we demonstrate a novel plating bath, free from cyanide, to plate a highly adherent nanocrystalline copper-silver (ncCuAg) coating on a stainless-steel substrate and its application as an antimicrobial coating. The microstructures, such as the grain size, texture, microstrain, and the crystalline preferential [...] Read more.
Herein we demonstrate a novel plating bath, free from cyanide, to plate a highly adherent nanocrystalline copper-silver (ncCuAg) coating on a stainless-steel substrate and its application as an antimicrobial coating. The microstructures, such as the grain size, texture, microstrain, and the crystalline preferential orientation of CuAg deposits, are systematically investigated by X-ray diffraction analysis. The range of 13.4–16.6 nm was discovered to be the crystallite size determined from the X-ray peak broadening (Scherrer’s formula). Both HRTEM, FESEM-EDS, XPS, and mapping analysis revealed that the ncCuAg coatings are composed of both Ag and Cu atoms. Electrochemical processes occurring during CuAg co-deposition were investigated by using linear sweep voltammetry (LSV), cyclic voltammetry (CV), and anodic linear stripping voltammetry (ALSV). Additionally, the coatings made of ncCuAg produced by these baths work well as antibacterial agents against gram-positive (Staphylococcus) and gram-negative bacteria (Escherichia coli). Full article
Show Figures

Graphical abstract

17 pages, 2865 KiB  
Article
One-Pot, In-Situ Synthesis of 8-Armed Poly(Ethylene Glycol)-Coated Ag Nanoclusters as a Fluorescent Sensor for Selective Detection of Cu2+
by Xiaoyuan Zhang, Guanghua Zhang, Gang Wei and Zhiqiang Su
Biosensors 2020, 10(10), 131; https://doi.org/10.3390/bios10100131 - 23 Sep 2020
Cited by 11 | Viewed by 3605
Abstract
Fluorescent nanomaterials, such as quantum dots, have developed rapidly in recent years and have been significantly developed. Herein, we demonstrate a facile, one-pot, and in-situ synthesis strategy to obtain fluorescent silver nanoclusters (AgNCs) coated with eight-armed poly (ethylene glycol) polymers (8PEG-AgNCs) via a [...] Read more.
Fluorescent nanomaterials, such as quantum dots, have developed rapidly in recent years and have been significantly developed. Herein, we demonstrate a facile, one-pot, and in-situ synthesis strategy to obtain fluorescent silver nanoclusters (AgNCs) coated with eight-armed poly (ethylene glycol) polymers (8PEG-AgNCs) via a direct gel-mediated process. During the synthesis, ammonium (NH3) served as the crosslinker for the gel formation via a amine-type Michael addition reaction. This hydrogel can be used as a template to synthesize AgNCs using its volume-limiting effect. The in-situ generation of AgNCs takes place inside the nanocages of the formed gels, which guarantees the homogenous distribution of AgNCs in the gel matrix, as well as the efficient coating of PEG on the nanoclusters. After the degradation of gels, the released 8PEG-AgNCs nanohybrids showed strong blue fluorescence and exhibited long-term stability in aqueous solution for nearly one year. Results showed that the fabricated sensor revealed excellent fluorescent sensitivity for the selective detection of Cu2+ with a detection limit of 50 nM and a wide linear detection range of 5–100 μM. It is proposed that the greater cross-linking density leads to smaller gel pores and allows the synthesis of AgNCs with fluorescent properties. These results indicate that this novel hydrogel with certain biodegradation has the potential to be applied as a fluorescent sensor for catalytic synthesis, fluorescence tracing in cells, and fluorescence detection fields. Meanwhile, the novel design principle has a certain versatility to accelerate the development and application of other kinds of metal nanoclusters and quantum dots. Full article
(This article belongs to the Special Issue Nanoparticles-Based Biosensors)
Show Figures

Figure 1

Back to TopTop