Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = nanotransfersome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 11535 KiB  
Article
Topical Delivery of Dual Loaded Nano-Transfersomes Mediated Chemo-Photodynamic Therapy against Melanoma via Inducing Cell Cycle Arrest and Apoptosis
by Yiping Guo, Wenxiao Zhong, Cheng Peng and Li Guo
Int. J. Mol. Sci. 2024, 25(17), 9611; https://doi.org/10.3390/ijms25179611 - 5 Sep 2024
Cited by 5 | Viewed by 1309
Abstract
Melanoma is a malignant skin cancer associated with high mortality rates and drug resistance, posing a significant threat to human health. The combination of chemotherapy and photodynamic therapy (PDT) represents a promising strategy to enhance antitumor efficacy through synergistic anti-cancer effects. Topical delivery [...] Read more.
Melanoma is a malignant skin cancer associated with high mortality rates and drug resistance, posing a significant threat to human health. The combination of chemotherapy and photodynamic therapy (PDT) represents a promising strategy to enhance antitumor efficacy through synergistic anti-cancer effects. Topical delivery of chemotherapeutic drugs and photosensitizers (PS) offers a non-invasive and safe way to treat melanoma. However, the effectiveness of these treatments is often hindered by challenges such as limited skin permeability and instability of the PS. In this study, transfersomes (TFS) were designed to facilitate transdermal delivery of the chemotherapeutic drug 5-Fluorouracil (5-FU) and the PS Imperatorin (IMP) for combined chemo-photodynamic therapy for melanoma. The cytotoxic and phototoxic effects of TFS-mediated PDT (TFS-UVA) were investigated in A375 cells and nude mice. The study also demonstrated that TFS-UVA generated intracellular ROS, induced G2/ M phase cell cycle arrest, and promoted cell apoptosis. In conclusion, this study indicated that 5-FU/ IMP-TFS serves as an effective transdermal therapeutic strategy for chemo-PDT in treating melanoma. Full article
(This article belongs to the Special Issue New Perspectives of Colloids for Biological Applications)
Show Figures

Figure 1

12 pages, 3182 KiB  
Article
Production of Antioxidant Transfersomes by a Supercritical CO2 Assisted Process for Transdermal Delivery Applications
by Raffaella Squittieri, Lucia Baldino and Ernesto Reverchon
Nanomaterials 2023, 13(12), 1812; https://doi.org/10.3390/nano13121812 - 6 Jun 2023
Cited by 8 | Viewed by 2234
Abstract
Transfersomes are deformable vesicles that can transport drugs across difficult-to-permeate barriers in human tissues. In this work, nano-transfersomes were produced for the first time by a supercritical CO2 assisted process. Operating at 100 bar and 40 °C, different amounts of phosphatidylcholine (2000 [...] Read more.
Transfersomes are deformable vesicles that can transport drugs across difficult-to-permeate barriers in human tissues. In this work, nano-transfersomes were produced for the first time by a supercritical CO2 assisted process. Operating at 100 bar and 40 °C, different amounts of phosphatidylcholine (2000 and 3000 mg), kinds of edge activators (Span® 80 and Tween® 80), and phosphatidylcholine to edge activator weight ratio (95:5, 90:10, 80:20) were tested. Formulations prepared using Span® 80 and phosphatidylcholine at an 80:20 weight ratio produced stable transfersomes (−30.4 ± 2.4 mV ζ-potential) that were characterized by a mean diameter of 138 ± 55 nm. A prolonged ascorbic acid release of up to 5 h was recorded when the largest amount of phosphatidylcholine (3000 mg) was used. Moreover, a 96% ascorbic acid encapsulation efficiency and a quasi-100% DPPH radical scavenging activity of transfersomes were measured after supercritical processing. Full article
(This article belongs to the Special Issue Nanosomes in Precision Nanomedicine)
Show Figures

Figure 1

18 pages, 3181 KiB  
Article
Experimental Design and Optimization of Nano-Transfersomal Gel to Enhance the Hypoglycemic Activity of Silymarin
by Marwa H. Abdallah, Amr S. Abu Lila, Seham Mohammed Shawky, Khaled Almansour, Farhan Alshammari, El-Sayed Khafagy and Tarek Saad Makram
Polymers 2022, 14(3), 508; https://doi.org/10.3390/polym14030508 - 27 Jan 2022
Cited by 38 | Viewed by 4100
Abstract
Current advancements in the research investigations focused at using natural products to generate novel dosage forms with a potential therapeutic impact. Silymarin is a natural product obtained from the herb Silybum marianum that has been shown to have remarkable hypoglycemic activity. Owing to [...] Read more.
Current advancements in the research investigations focused at using natural products to generate novel dosage forms with a potential therapeutic impact. Silymarin is a natural product obtained from the herb Silybum marianum that has been shown to have remarkable hypoglycemic activity. Owing to the low enteral absorption, instability in stomach secretion, and poor solubility of Silymarin, it was better to be produced as a topical dosage form. A three-factor, three-level Box Behnken (33 BB) design was constructed to develop 15 formulations using three independent variables (phospholipid concentration, surfactant concentration, and sonication time) and two dependent variables (encapsulation efficiency and in vitro drug release). The optimized formula was added to HPMC gel and the resulting transfersomal gel was investigated for its characteristics, in vitro, ex vivo and hypoglycemic behaviors. The pH of the Silymarin-loaded transfersomal gel was 7.05, the spreadability was 55.35 mm, and the viscosity was 6.27 Pa. Furthermore, Silymarin loaded transfersomal gel had the greatest transdermal flux (92.41 µg/cm2·h), which was much greater than all other formulations. In vivo observations revealed that Silymarin loaded transfersomal gel significantly reduced blood glucose levels, compared to either Silymarin gel or oral Silymarin suspension. The findings show that the developed transfersomal gel could be an effective carrier for Silymarin transdermal delivery. Full article
(This article belongs to the Special Issue Polymeric Colloidal Materials for Biomedical Applications II)
Show Figures

Figure 1

19 pages, 3005 KiB  
Article
Design and Characterisation of pH-Responsive Photosensitiser-Loaded Nano-Transfersomes for Enhanced Photodynamic Therapy
by Sooho Yeo, Il Yoon and Woo Kyoung Lee
Pharmaceutics 2022, 14(1), 210; https://doi.org/10.3390/pharmaceutics14010210 - 16 Jan 2022
Cited by 14 | Viewed by 3260
Abstract
Photodynamic therapy (PDT) is a non-invasive and tumour-specific therapy. Photosensitizers (PSs) (essential ingredients in PDT) aggregate easily owing to their lipophilic properties. The aim of this study was to synthesise a PS (methyl pheophorbide a, MPa) and design a biocompatible lipid-based nanocarrier to [...] Read more.
Photodynamic therapy (PDT) is a non-invasive and tumour-specific therapy. Photosensitizers (PSs) (essential ingredients in PDT) aggregate easily owing to their lipophilic properties. The aim of this study was to synthesise a PS (methyl pheophorbide a, MPa) and design a biocompatible lipid-based nanocarrier to improve its bioavailability and pharmacological effects. MPa-loaded nano-transfersomes were fabricated by sonication. The characteristics of synthesised PS and nano-transfersomes were assessed. The effects of PDT were evaluated by 1,3-diphenylisobenzofuran assay and by measuring photo-cytotoxicity against HeLa and A549 cell lines. The mean particle size and zeta potential for nano-transfersomes ranged from 95.84 to 267.53 nm and −19.53 to −45.08 mV, respectively. Nano-transfersomes exhibited sustained drug release for 48 h in a physiological environment (as against burst release in an acidic environment), which enables its use as a pH-responsive drug release system in PDT with enhanced photodynamic activity and reduced side effects. The formulations showed light cytotoxicity, but no dark toxicity, which meant that light irradiation resulted in anti-cancer effects. Additionally, formulations with the smallest size exhibited photodynamic activity to a larger extent than those with the highest loading capacity or free MPa. These results suggest that our MPa-loaded nano-transfersome system is a promising anti-cancer strategy for PDT. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

23 pages, 3799 KiB  
Article
Oral Gel Loaded by Fluconazole‒Sesame Oil Nanotransfersomes: Development, Optimization, and Assessment of Antifungal Activity
by Hala M. Alkhalidi, Khaled M. Hosny and Waleed Y. Rizg
Pharmaceutics 2021, 13(1), 27; https://doi.org/10.3390/pharmaceutics13010027 - 25 Dec 2020
Cited by 34 | Viewed by 4231
Abstract
Candidiasis is one of the frequently encountered opportunistic infections in the oral cavity and can be found in acute and chronic presentations. The study aimed to develop fluconazole-loaded sesame oil containing nanotransfersomes (FS-NTF) by the thin-layer evaporation technique to improve the local treatment [...] Read more.
Candidiasis is one of the frequently encountered opportunistic infections in the oral cavity and can be found in acute and chronic presentations. The study aimed to develop fluconazole-loaded sesame oil containing nanotransfersomes (FS-NTF) by the thin-layer evaporation technique to improve the local treatment of oral candidiasis. Optimization of the formulation was performed using the Box‒Behnken statistical design to determine the variable parameters that influence the vesicle size, entrapment efficiency, zone of inhibition, and ulcer index. Finally, the formulated FS-NTF was embedded within the hyaluronic acid‒based hydrogel (HA-FS-NTF). The rheological behavior of the optimized HA-FS-NTF was assessed and the thixotropic behavior with the pseudoplastic flow was recorded; this is desirable for an oral application. An in vitro release study revealed the rapid release of fluconazole from the HA-FS-NTF. This was significantly higher when compared with the fluconazole suspension and hyaluronic acid hydrogel containing fluconazole. Correspondingly, the ex vivo permeation was also found to be higher in HA-FS-NTF in sheep buccal mucosa (400 μg/cm2) when compared with the fluconazole suspension (122 μg/cm2) and hyaluronic acid hydrogel (294 μg/cm2). The optimized formulation had an inhibition zone of 14.33 ± 0.76 mm and enhanced antifungal efficacy for the ulcer index (0.67 ± 0.29) in immunocompromised animals with Candida infection; these findings were superior to those of other tested formulations. Hence, it can be summarized that fluconazole can effectively be delivered for the treatment of oral candidiasis when it is entrapped in a nanotransfersome carrier and embedded into cross-linked hyaluronic acid hydrogel. Full article
(This article belongs to the Special Issue Preclinical Evaluation of Lipid-Based Nanosystems)
Show Figures

Figure 1

17 pages, 3147 KiB  
Article
Topical Delivery of Carvedilol Loaded Nano-Transfersomes for Skin Cancer Chemoprevention
by Mengbing Chen, Md Abdullah Shamim, Ayaz Shahid, Steven Yeung, Bradley T. Andresen, Jeffrey Wang, Vijaykumar Nekkanti, Frank L. Meyskens, Kristen M. Kelly and Ying Huang
Pharmaceutics 2020, 12(12), 1151; https://doi.org/10.3390/pharmaceutics12121151 - 27 Nov 2020
Cited by 58 | Viewed by 4541
Abstract
The β-blocker carvedilol has been shown to prevent skin carcinogenesis in vitro and in vivo. Since systemic absorption of the β-blocker may cause cardiovascular disturbance, we developed a carvedilol loaded transfersome for skin-targeted delivery. Transfersomes were prepared using phospholipids and surfactants at various [...] Read more.
The β-blocker carvedilol has been shown to prevent skin carcinogenesis in vitro and in vivo. Since systemic absorption of the β-blocker may cause cardiovascular disturbance, we developed a carvedilol loaded transfersome for skin-targeted delivery. Transfersomes were prepared using phospholipids and surfactants at various ratios and characterized. One formulation (F18) selected for further analysis was composed of carvedilol, soy phosphatidylcholine, and Tween-80 at a ratio of 1:3:0.5, which had a particle size of 115.6 ± 8.7 nm, a zeta potential of 11.34 ± 0.67 mV, and an encapsulation efficiency of 93.7 ± 5.1%. F18 inhibited EGF-induced neoplastic transformation of mouse epidermal JB6 P+ cells at non-toxic concentrations, while only high concentrations induced cytotoxicity in JB6 P+ and human keratinocytes HaCaT. Compared to the free drug, F18 released through the dialysis membrane and permeated through the porcine ear skin at a slower rate, but similarly depositing the drug in the epidermis and dermis of the skin. Consistently, surface application of F18 on reconstructed full-thickness human skin showed slower drug permeation, while it suppressed ultraviolet-induced DNA damage, inflammatory gene expression, and apoptosis. These data indicate that transfersome is a promising topical delivery system of carvedilol for preventing ultraviolet-induced skin damage and carcinogenesis. Full article
(This article belongs to the Special Issue Skin and Formulation)
Show Figures

Figure 1

19 pages, 5171 KiB  
Article
Preparation and Optimization of In Situ Gel Loaded with Rosuvastatin-Ellagic Acid Nanotransfersomes to Enhance the Anti-Proliferative Activity
by Khaled M. Hosny, Waleed Y. Rizg and Rasha A. Khallaf
Pharmaceutics 2020, 12(3), 263; https://doi.org/10.3390/pharmaceutics12030263 - 13 Mar 2020
Cited by 38 | Viewed by 4064
Abstract
The objective of this study was to develop an optimized sustained-release nanotransfersomes (NTS) based in situ gel formulation of rosuvastatin (RO) combined with ellagic acid (EA) antioxidant, to enhance cytotoxic and anti-proliferative activity against tongue carcinoma. The concentrations of lecithin, Tween 80, and [...] Read more.
The objective of this study was to develop an optimized sustained-release nanotransfersomes (NTS) based in situ gel formulation of rosuvastatin (RO) combined with ellagic acid (EA) antioxidant, to enhance cytotoxic and anti-proliferative activity against tongue carcinoma. The concentrations of lecithin, Tween 80, and d-tocopherol polyethylene glycol succinate (TPGS) were considered as independent variables. Particle size, entrapment, and stability were selected as dependent variables. The obtained formulation containing 25% lecithin, 20% Tween 80, and TPGS 15% fulfilled the prerequisites of the optimum formulation. RO-NTS loaded in situ gel was prepared and optimized for concentrations of Poloxamer 407, and Carbopol, using statistical design. Drug release from in situ gel showed a sustained release profile. The RO IC50 was decreased by half for the in situ gel in comparison to plain RO and RO-EA-NTS. A significant amount of caspase-3 was detected in all the formulation treatments. The studies indicated that EA’s synergistic anti-oxidant effect owing to a high affinity to the PGP efflux transporter and higher penetration in the RO-NTS formulation led to a higher inhibition against human chondrosarcome-3 cancer cell lines. RO-EA NTS–loaded in situ gel had a sustained release that could be significant in localized therapy as an alternative to surgery in the treatment of aggressive tongue carcinoma. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop