Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nanobioceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 11344 KiB  
Article
New Nanobioceramics Based on Hydroxyapatite for Biomedical Applications: Stability and Properties
by Carmen Steluta Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Catalin Constantin Negrila, Damien Leduc, Liliana Ghegoiu, Coralia Bleotu, Mounsif Ech Cherif El Kettani, Roxana Trusca, Philippe Zelmar and Mihai Valentin Predoi
Nanomaterials 2025, 15(3), 224; https://doi.org/10.3390/nano15030224 - 30 Jan 2025
Cited by 1 | Viewed by 1380
Abstract
In this work, we report for the first time the development and complex characterization of new bioceramics based on hydroxyapatite (HAp, Ca10(PO4)6(OH)2). On the other hand, the lyophilization process was used for the first time [...] Read more.
In this work, we report for the first time the development and complex characterization of new bioceramics based on hydroxyapatite (HAp, Ca10(PO4)6(OH)2). On the other hand, the lyophilization process was used for the first time in this research. The samples were obtained by a modified coprecipitation method and were dried by lyophilization (lyophilized hydroxyapatite (HApLF) and lyophilized zinc-doped hydroxyapatite (5ZnHApLF)). Valuable information about the HApLF and 5ZnHApLF stability was obtained through nondestructive ultrasound measurements. The X-ray diffraction (XRD) studies revealed the phase and the effects of the incorporation of Zn ions into the HAp structure. The chemical composition of the samples was evaluated by energy dispersive X-ray analysis (EDS) and X-ray photoelectron spectroscopy (XPS). Information about the functional groups present in the HApLF and 5ZnHApLF was obtained using Fourier Transform Infrared Spectroscopy (FTIR) studies. The morphology of HApLF and 5ZnHApLF pellets was observed by scanning electron microscopy (SEM). The surface topography of HApLF and 5ZnHApLF pellets was studied with the aid of atomic force microscopy (AFM). Details regarding the roughness of the samples were also obtained using AFM topographies and SEM images. A complementary study was also carried out on a larger analysis surface using a Scanning Acoustic Microscope (SAM). The SAM was used for the first time to analyze the surface of HAp and 5ZnHAp pellets. The biological properties of the HApLF and 5ZnHApLF pellets was investigated with the aid of MG63 and human gingival fibroblasts (HGF-1) cell lines. The results of the cell viability assay highlighted that both the HApLF and 5ZnHApLF pellets exhibited good biological activity. Moreover, SEM and AFM studies were conducted in order to emphasize the development of MG63 and HGF-1 cells on the pellet’s surface. Both SEM and AFM images depicted that the pellets’ surface favored the cell attachment and development of MG63 and HGF-1 cells. Furthermore, the antimicrobial properties of the HApLF and 5ZnHApLF were evaluated against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and Candida albicans ATCC 10231. The results of the antimicrobial assays highlighted that the 5ZnHApLF exhibited a strong antimicrobial activity against the tested microbial strains. The results of the biological assays suggested that the samples show great potential for being used in the development of novel materials for biomedical applications. Full article
Show Figures

Figure 1

33 pages, 14960 KiB  
Article
Composite PLGA–Nanobioceramic Coating on Moxifloxacin-Loaded Akermanite 3D Porous Scaffolds for Bone Tissue Regeneration
by Georgia K. Pouroutzidou, Lambrini Papadopoulou, Maria Lazaridou, Konstantinos Tsachouridis, Chrysanthi Papoulia, Dimitra Patsiaoura, Ioannis Tsamesidis, Konstantinos Chrissafis, George Vourlias, Konstantinos M. Paraskevopoulos, Antonios D. Anastasiou, Dimitrios N. Bikiaris and Eleana Kontonasaki
Pharmaceutics 2023, 15(3), 819; https://doi.org/10.3390/pharmaceutics15030819 - 2 Mar 2023
Cited by 13 | Viewed by 3124
Abstract
Silica-based ceramics doped with calcium and magnesium have been proposed as suitable materials for scaffold fabrication. Akermanite (Ca2MgSi2O7) has attracted interest for bone regeneration due to its controllable biodegradation rate, improved mechanical properties, and high apatite-forming ability. [...] Read more.
Silica-based ceramics doped with calcium and magnesium have been proposed as suitable materials for scaffold fabrication. Akermanite (Ca2MgSi2O7) has attracted interest for bone regeneration due to its controllable biodegradation rate, improved mechanical properties, and high apatite-forming ability. Despite the profound advantages, ceramic scaffolds provide weak fracture resistance. The use of synthetic biopolymers such as poly(lactic-co-glycolic acid) (PLGA) as coating materials improves the mechanical performance of ceramic scaffolds and tailors their degradation rate. Moxifloxacin (MOX) is an antibiotic with antimicrobial activity against numerous aerobic and anaerobic bacteria. In this study, silica-based nanoparticles (NPs) enriched with calcium and magnesium, as well as copper and strontium ions that induce angiogenesis and osteogenesis, respectively, were incorporated into the PLGA coating. The aim was to produce composite akermanite/PLGA/NPs/MOX-loaded scaffolds through the foam replica technique combined with the sol–gel method to improve the overall effectiveness towards bone regeneration. The structural and physicochemical characterizations were evaluated. Their mechanical properties, apatite forming ability, degradation, pharmacokinetics, and hemocompatibility were also investigated. The addition of NPs improved the compressive strength, hemocompatibility, and in vitro degradation of the composite scaffolds, resulting in them keeping a 3D porous structure and a more prolonged release profile of MOX that makes them promising for bone regeneration applications. Full article
Show Figures

Figure 1

24 pages, 6750 KiB  
Article
Synthesis and Characterization of Novel Calcium-Silicate Nanobioceramics with Magnesium: Effect of Heat Treatment on Biological, Physical and Chemical Properties
by Konstantina Kazeli, Ioannis Tsamesidis, Anna Theocharidou, Lamprini Malletzidou, Jonathan Rhoades, Georgia K. Pouroutzidou, Eleni Likotrafiti, Konstantinos Chrissafis, Theodoros Lialiaris, Lambrini Papadopoulou, Eleana Kontonasaki and Evgenia Lymperaki
Ceramics 2021, 4(4), 628-651; https://doi.org/10.3390/ceramics4040045 - 27 Nov 2021
Cited by 8 | Viewed by 5858
Abstract
Glass-ceramic nanopowder with a composition of 55SiO2-35CaO-10MgO (mol %) was synthesized by the sol–gel method and was heat treated at three temperatures (T1 = 835 °C, T2 = 1000 °C, T3 = 1100 °C) in order to obtain different materials (C1, [...] Read more.
Glass-ceramic nanopowder with a composition of 55SiO2-35CaO-10MgO (mol %) was synthesized by the sol–gel method and was heat treated at three temperatures (T1 = 835 °C, T2 = 1000 °C, T3 = 1100 °C) in order to obtain different materials (C1, C2, C3, respectively) varying in crystal structure. Bioactivity and oxidative stress were evaluated in simulated body fluid (SBF) for various time periods (up to 10 days). The structure of the synthesized materials and their apatite-forming ability were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM/EDS). The antibacterial properties of the synthesized materials were evaluated against three Gram-positive and four Gram-negative bacterial strains and their biocompatibility was verified on a primary cell line of human gingival fibroblasts (HGFs) by the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay. The crystallization of the materials was increased by sintering temperature. Heat treatment did not inhibit the bioactive behavior of the materials as apatite formation started after 3 days in SBF. C2, C3 showed some indications of apatite forming even from the first day. Regarding cell viability, a variety of biological behaviors, concerning both dose and time points, was observed between the positive control and the tested materials by both the MTT assay and oxidative stress analysis. In conclusion, the nanobioceramic materials of this study possess a multitude of attractive physicochemical and biological properties that make them suitable candidates for bone regeneration applications, fillers in nanocomposite scaffolds, or as grafts in bone cavities and periodontal lesions. Full article
(This article belongs to the Special Issue Ceramic Processing and Sintering)
Show Figures

Graphical abstract

Back to TopTop