Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nano-Cu2O@ZrP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 213 KiB  
Editorial
Adsorption Technology for Water and Wastewater Treatments
by Hai Nguyen Tran
Water 2023, 15(15), 2857; https://doi.org/10.3390/w15152857 - 7 Aug 2023
Cited by 24 | Viewed by 8222
Abstract
This Special Issue includes 12 research papers on the development of various materials for adsorbing different contaminants in water, such as Sb, Cr(VI), Cu(II), Zn(II), fluorine, phenol, dyes (indigo carmine, Congo red, methylene blue, and crystal violet), and drugs (dlevofloxacin, captopril, and diclofenac, [...] Read more.
This Special Issue includes 12 research papers on the development of various materials for adsorbing different contaminants in water, such as Sb, Cr(VI), Cu(II), Zn(II), fluorine, phenol, dyes (indigo carmine, Congo red, methylene blue, and crystal violet), and drugs (dlevofloxacin, captopril, and diclofenac, and paracetamol). The commercial, natural, and synthetic materials used as adsorbents comprise commercial activated carbon, natural clay and montmorillonite, biosorbent based on sugarcane bagasse or algal, graphene oxide, graphene oxide-based magnetic nanomaterial, mesoporous Zr-G-C3N4 nanomaterial, nitrogen-doped core–shell mesoporous carbonaceous nano-sphere, magnetic Fe-C-N composite, polyaniline-immobilized ZnO nanorod, and hydroxy-iron/acid–base-modified sepiolite composite. Various operational conditions are evaluated under batch adsorption experiments, such as pH, NaCl, solid/liquid ratio, stirring speed, contact time, solution temperature, initial adsorbate concentration. The re-usability of laden materials is evaluated through adsorption–desorption cycles. Adsorption kinetics, isotherm, thermodynamics, and mechanisms are studied and discussed. Machine learning processes and statistical physics models are also applied in the field of adsorption science and technology. Full article
(This article belongs to the Special Issue Adsorption Technology for Water and Wastewater Treatments)
16 pages, 5643 KiB  
Article
Olive Mill Wastewater (OMW) Treatment Using Photocatalyst Media
by Abeer Al Bawab, Muna Abu-Dalo, Aya Khalaf and Duaa Abu-Dalo
Catalysts 2022, 12(5), 539; https://doi.org/10.3390/catal12050539 - 15 May 2022
Cited by 10 | Viewed by 3522
Abstract
A new nanophotocatalysts series of M2Zr2O7 (M = Mn, Cu, and Fe) and doped Fe2Zr2O7 systems were prepared via sol-gel using the pechini method, characterized, and tested in photocatalytic degradation of olive [...] Read more.
A new nanophotocatalysts series of M2Zr2O7 (M = Mn, Cu, and Fe) and doped Fe2Zr2O7 systems were prepared via sol-gel using the pechini method, characterized, and tested in photocatalytic degradation of olive mill wastewater (OMW). The photocatalytic degradation of the prepared materials was evaluated by measuring total phenolic compounds (TPCs) using the Folin-Ciocalteu method for variable pH under a commercial LED lamp (45 W). The removal of TPCs was measured at different contact times ranging from 2 h to 6 days. X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis approved the nano size of (5–17 nm) and quasi-spherical morphology of the prepared materials. ICP-OES analysis confirmed the XRD analysis and approved the structure of the prepared materials. Aggregation of the nanomaterials was observed using TEM imaging. Brunauer-Emmett-Teller (BET) analysis measured a 67 m2/g surface area for Fe2Zr2O7. Doping Fe with Mn increased the surface area to 173 m2/g and increased to 187 m2/g with a further increase of the Mn dopant. Increasing the Mn dopant concentration increased both surface area and photocatalytic degradation. The highest degradation of TPCs was observed for Mn2Zr2O7 around 70% at pH 10 and exposure time up to one day. Full article
(This article belongs to the Special Issue Environmental Catalysis in Advanced Oxidation Processes)
Show Figures

Graphical abstract

13 pages, 4991 KiB  
Article
Integrating Nano-Cu2O@ZrP into In Situ Polymerized Polyethylene Terephthalate (PET) Fibers with Enhanced Mechanical Properties and Antibacterial Activities
by Jialiang Zhou, Xiang Fei, Congqi Li, Senlong Yu, Zexu Hu, Hengxue Xiang, Bin Sun and Meifang Zhu
Polymers 2019, 11(1), 113; https://doi.org/10.3390/polym11010113 - 10 Jan 2019
Cited by 29 | Viewed by 5418
Abstract
The approach of in situ polymerization modification has proven to be an effective route for introducing functions for polyester materials. In this work, Cu2O@ZrP nanosheets with excellent dispersity and high antibacterial activity were integrated into in situ polymerized polyethylene terephthalate (PET) [...] Read more.
The approach of in situ polymerization modification has proven to be an effective route for introducing functions for polyester materials. In this work, Cu2O@ZrP nanosheets with excellent dispersity and high antibacterial activity were integrated into in situ polymerized polyethylene terephthalate (PET) fibers, revealing an enhanced mechanical performance in comparison with the PET fibers fabricated directly via a traditional melt blending method. Additionally, such an in situ polymerized PET/Cu2O@ZrP fibers displayed highly enhanced mechanical properties; and great antibacterial activities against multi-types of bacterium, including S. aureus, E. coli and C. albicans. For the as-obtained two types of PET/Cu2O@ZrP fibers, we have detailed their molecular weight (detailed molecular weight) and dispersibility of nano-Cu2O@ZrP and fibers crystallinity was investigated by Gel chromatography (GPC), Scanning electron microscope (SEM), and X-ray diffractometer (XRD), respectively. The results showed that the aggregation of the nano-Cu2O@ZrP in the resultant PET matrix could be effectively prevented during its in situ polymerization process, hence we attribute its highly enhanced mechanical properties to its superior dispersion of nano-Cu2O@ZrP. Full article
(This article belongs to the Special Issue Polymer Matrix Composites for Advanced Applications)
Show Figures

Graphical abstract

Back to TopTop