Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mustard hill coral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 956 KB  
Review
A Review of Research on the Mustard Hill Coral, Porites astreoides
by Ryan G. Eagleson, Lorenzo Álvarez-Filip and John S. Lumsden
Diversity 2023, 15(3), 462; https://doi.org/10.3390/d15030462 - 21 Mar 2023
Cited by 7 | Viewed by 4233
Abstract
Coral reefs are the most diverse habitat per unit area in the world’s oceans, supporting an estimated 1–3 million species in only 0.2% of its area. These ecosystems have suffered severe declines since the 1970s, largely as a result of climate change, ocean [...] Read more.
Coral reefs are the most diverse habitat per unit area in the world’s oceans, supporting an estimated 1–3 million species in only 0.2% of its area. These ecosystems have suffered severe declines since the 1970s, largely as a result of climate change, ocean acidification, pollution, disease, and overfishing. Porites astreoides is a shallow species that is able to thrive in a variety of environmental conditions and has been a clear ‘winner’ on Atlantic reefs in the last decades. This, coupled with its ease of identification and wide distribution, has caused P. astreoides to become a focal species in many scientific studies. Given the current and increasing significance of P. astreoides, this review sought to (i) identify the key life history traits that allowed this species to thrive under stressful conditions; (ii) compile aspects of its biology and ecology to understand its future contribution to Atlantic reefs, and (iii) identify knowledge gaps. To date, no comprehensive overview of the literature exists for P. astreoides. All articles available on Google Scholar up to the time of submission containing the terms ‘Mustard Hill Coral’, ‘Porites astreoides’, or ‘P. astreoides’ were examined for potential inclusion in this review. Papers were assessed based on whether they captured the most influential or widespread theories, represented an important trend in the research, or contained novel findings relevant to the understanding of this species. This review provides a scholarly resource and wide-ranging synthesis of P. astreoides on Atlantic reefs of today and the future. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Coral Reefs)
Show Figures

Figure 1

15 pages, 2684 KB  
Article
Coverage Increases of Porites astreoides in Grenada Determined by Shifts in Size-Frequency Distribution
by Ryan G. Eagleson, John S. Lumsden, Lorenzo Álvarez-Filip, Christophe M. Herbinger and Ryan A. Horricks
Diversity 2021, 13(7), 288; https://doi.org/10.3390/d13070288 - 24 Jun 2021
Cited by 4 | Viewed by 2947
Abstract
Despite coral community collapse, the mustard hill coral (Porites astreoides) is a species currently experiencing success throughout the Caribbean. The inshore reefs of Grenada were selected to study the influence of benthic factors on the abundance, size, and coverage of P. [...] Read more.
Despite coral community collapse, the mustard hill coral (Porites astreoides) is a species currently experiencing success throughout the Caribbean. The inshore reefs of Grenada were selected to study the influence of benthic factors on the abundance, size, and coverage of P. astreoides colonies. Surveys of reef communities along established 30 m transects were conducted at eight sites in 2014 and 2017 using a 0.5 m² quadrat. Coral Point Count was used to annotate the images, estimating the coverage of scleractinian corals, sponges, algae, and benthic substrates. Coverage, size, and abundance of P. astreoides colonies were quantified using the area measurement tool in ImageJ standardized against the quadrats. There were significant differences in benthic community assemblages between islands, selected sites, and between years. From 2014 to 2017 there was a significant decrease in the mean abundance of P. astreoides colonies and significant increases in mean colony size and coverage. The presence of P. astreoides colonies was significantly correlated with: rubble (−), sand (−); pavement (+); macroalgae (−); coralline algae (+); sponges (varying response); gorgonians (−); massive corals (+); and branching corals (−). P. astreoides follows similar recruitment patterns as other scleractinian corals. Observed changes in P. astreoides populations appear to indicate a recovery event following a disturbance, potentially tropical storm Chantal in 2013. Full article
(This article belongs to the Special Issue Coral Reef Ecology and Biodiversity)
Show Figures

Graphical abstract

Back to TopTop