Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = multiple channel laser emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 28521 KiB  
Article
Four-Channel Emitting Laser Fuze Structure Based on 3D Particle Hybrid Collision Scattering Under Smoke Characteristic Variation
by Zhe Guo, Bing Yang and Zhonghua Huang
Appl. Sci. 2025, 15(13), 7292; https://doi.org/10.3390/app15137292 - 28 Jun 2025
Viewed by 239
Abstract
Our work presents a laser fuze detector structure with a four-channel center-symmetrical emitting laser under the influence of the three-dimensional (3D) and spatial properties of smoke clouds, which was used to improve the laser fuze’s anti-smoke interference ability, as well as the target [...] Read more.
Our work presents a laser fuze detector structure with a four-channel center-symmetrical emitting laser under the influence of the three-dimensional (3D) and spatial properties of smoke clouds, which was used to improve the laser fuze’s anti-smoke interference ability, as well as the target detection performance. A laser echo signal model under multiple frequency-modulated continuous-wave (FMCW) lasers was constructed by investigating the hybrid collision scattering process of photons and smoke particles. Using a virtual particle system implemented in Unity3D, the laser target characteristics were studied under the conditions of multiple smoke particle characteristic variations. The simulation results showed that false alarms in low-visibility and missed alarms in high-visibility smoke scenes could be effectively solved with four emitting lasers. With this structure of the laser fuze prototype, the smoke echo signal and the target echo signal could be separated, and the average amplitude growth rate of the target echo signal was improved. The conclusions are supported by the results of experiments. Therefore, this study not only reveals laser target properties for 3D and spatial properties of particles, but also provides design guidance and reasonable optimization of FMCW laser fuze multi-channel emission structures in combination with multi-particle collision types and target characteristics. Full article
Show Figures

Figure 1

22 pages, 31710 KiB  
Article
FMCW Laser Fuze Structure with Multi-Channel Beam Based on 3D Particle Collision Scattering Model under Smoke Interference
by Zhe Guo, Bing Yang, Kaiwei Wu, Yanbin Liang, Shijun Hao and Zhonghua Huang
Sensors 2024, 24(16), 5395; https://doi.org/10.3390/s24165395 - 21 Aug 2024
Cited by 2 | Viewed by 1402
Abstract
In the environment of smoke and suspended particles, the accurate detection of targets is one of the difficulties for frequency-modulated continuous-wave (FMCW) laser fuzes to work properly in harsh conditions. To weaken and eliminate the significant influence caused by the interaction of different [...] Read more.
In the environment of smoke and suspended particles, the accurate detection of targets is one of the difficulties for frequency-modulated continuous-wave (FMCW) laser fuzes to work properly in harsh conditions. To weaken and eliminate the significant influence caused by the interaction of different systems in the photon transmission process and the smoke particle environment, it is necessary to increase the amplitude of the target echo signal to improve the signal-to-noise ratio (SNR), which contributes to enhancing the detection performance of the laser fuze for the ground target in the smoke. Under these conditions, the particle transmission of photons in the smoke environment is studied from the perspective of three-dimentional (3D) collisions between photons and smoke particles, and the modeling and Unity3D simulation of FMCW laser echo signal based on 3D particle collision is conducted. On this basis, a laser fuze structure based on multiple channel beam emission is designed for the combined effect of particle features from different systems and its impact on the target characteristics is researched. Simulation results show that the multiple channel laser emission enhances the laser target echo signal amplitude and also improves the anti-interference ability against the combined effects of multiple particle features compared with the single channel. Through the validation based on the laser prototype with four-channel beam emitting, the above conclusions are supported by the experimental results. Therefore, this study not only reveals the laser target properties under the 3D particle collision perspective, but also reflects the reasonableness and effectiveness of utilizing the target characteristics in the 3D particle collision mode to enhance the detection performance of FMCW laser fuze in the smoke. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 4264 KiB  
Article
Postfilament-Induced Two-Photon Fluorescence of Dyed Liquid Aerosol Enhanced by Structured Femtosecond Laser Pulse
by Dmitry V. Apeksimov, Pavel A. Babushkin, Yury E. Geints, Andrey M. Kabanov, Elena E. Khoroshaeva, Victor K. Oshlakov, Alexey V. Petrov and Alexander A. Zemlyanov
Atmosphere 2024, 15(7), 813; https://doi.org/10.3390/atmos15070813 - 6 Jul 2024
Cited by 1 | Viewed by 1500
Abstract
Laser-induced fluorescence spectroscopy (LIFS) is actively used for remote sensing of atmospheric aerosols and is currently one of the most sensitive and selective techniques for determining small concentrations of substances inside particles. The use of high-power femtosecond laser sources for LIFS-based remote sensing [...] Read more.
Laser-induced fluorescence spectroscopy (LIFS) is actively used for remote sensing of atmospheric aerosols and is currently one of the most sensitive and selective techniques for determining small concentrations of substances inside particles. The use of high-power femtosecond laser sources for LIFS-based remote sensing of aerosols contributes to the development of new-generation fluorescence atmospheric lidars since it makes it possible to overcome the energy threshold for the nonlinear-optical effects of multiphoton absorption in particles and receive the emission signal at long distances in the atmosphere. Our study is aimed at the development and experimental demonstration of the technique of nonlinear laser-induced fluorescence spectroscopy (NLIFS) based on the remote excitation of aerosol fluorescent emission stimulated by a spatially structured high-power femtosecond laser pulse. Importantly, for the first time to our knowledge, we demonstrate the advances in using stochastically structured plasma-free intense light channels (postfilaments) specially formed by the propagation of femtosecond laser radiation through a turbulent air layer to improve NLIFS efficiency. A multiple increase in the received signal of two-photon-excited fluorescence of polydisperse-dyed aqueous aerosols by the structured postfilaments is reported. Full article
Show Figures

Figure 1

16 pages, 8403 KiB  
Article
Parameter Simulation and Design of an Airborne Hyperspectral Imaging LiDAR System
by Liyong Qian, Decheng Wu, Dong Liu, Shalei Song, Shuo Shi, Wei Gong and Le Wang
Remote Sens. 2021, 13(24), 5123; https://doi.org/10.3390/rs13245123 - 17 Dec 2021
Cited by 6 | Viewed by 3195
Abstract
With continuous technological development, the future development trend of LiDAR in the field of remote sensing and mapping is to obtain the elevation and spectral information of ground targets simultaneously. Airborne hyperspectral imaging LiDAR inherits the advantages of active and passive remote sensing [...] Read more.
With continuous technological development, the future development trend of LiDAR in the field of remote sensing and mapping is to obtain the elevation and spectral information of ground targets simultaneously. Airborne hyperspectral imaging LiDAR inherits the advantages of active and passive remote sensing detection. This paper presents a simulation method to determine the design parameters of an airborne hyperspectral imaging LiDAR system. In accordance with the hyperspectral imaging LiDAR equation and optical design principles, the atmospheric transmission model and the reflectance spectrum of specific ground targets are utilized. The design parameters and laser emission spectrum of the hyperspectral LiDAR system are considered, and the signal-to-noise ratio of the system is obtained through simulation. Without considering the effect of detector gain and electronic amplification on the signal-to-noise ratio, three optical fibers are coupled into a detection channel, and the power spectral density emitted by the supercontinuum laser is simulated by assuming that the signal-to-noise ratio is equal to 1. The power spectral density emitted by the laser must not be less than 15 mW/nm in the shortwave direction. During the simulation process, the design parameters of the hyperspectral LiDAR system are preliminarily demonstrated, and the feasibility of the hyperspectral imaging LiDAR system design is theoretically guaranteed in combination with the design requirements of the supercontinuum laser. The spectral resolution of a single optical fiber of the hyperspectral LiDAR system is set to 2.5 nm. In the actual prototype system, multiple optical fibers can be coupled into a detection channel in accordance with application needs to further improve the signal-to-noise ratio of hyperspectral LiDAR system detection. Full article
(This article belongs to the Special Issue Land Cover Classification Using Multispectral LiDAR Data)
Show Figures

Figure 1

Back to TopTop