Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multiparty payment channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1056 KiB  
Article
Privacy-Preserving Multi-Party Cross-Chain Transaction Protocols
by Chang Chen, Guoyu Yang, Zhihao Li, Fuan Xiao, Qi Chen and Jin Li
Cryptography 2024, 8(1), 6; https://doi.org/10.3390/cryptography8010006 - 4 Feb 2024
Cited by 5 | Viewed by 3814
Abstract
Cross-chain transaction technologies have greatly promoted the scalability of cryptocurrencies, which then facilitates the development of Metaverse applications. However, existing solutions rely heavily on centralized middleware (notary) or smart contracts. These schemes lack privacy considerations, and users’ cross-chain transactions are easy to master [...] Read more.
Cross-chain transaction technologies have greatly promoted the scalability of cryptocurrencies, which then facilitates the development of Metaverse applications. However, existing solutions rely heavily on centralized middleware (notary) or smart contracts. These schemes lack privacy considerations, and users’ cross-chain transactions are easy to master by other parties. Some signature-based payment schemes have good privacy but do not support multi-party cross-chain protocols or rely heavily on some time assumptions. The uncertainty of user behavior makes it difficult to design a secure multi-party cross-chain protocol. To solve these problems, we investigate how to design a secure multi-party cross-chain transaction protocol with offline tolerance. We propose a new signature algorithm called the pre-adaptor signature scheme, an extension of the adaptor signature scheme. The pre-adaptor signature scheme combines the multi-signature and adaptor signature schemes, which can realize the secret transmission channel between multiple parties. To provide offline tolerance, we encode our protocol into the P2SH script. Our protocol provides better privacy due to no dependence on smart contracts. The performance evaluation was conducted with ten participants. For each participant of our cross-chain protocol, the initialization and execution process can be performed in 3 milliseconds and with 6 k bytes of communication overhead at most. The cost increases linearly with the increase in the number of participants. Full article
(This article belongs to the Section Blockchain Security)
Show Figures

Figure 1

24 pages, 1562 KiB  
Article
Coalition Formation Game for Cost-Efficient Multiparty Payment Channel in Payment Channel Networks
by Wooseong Kim
Sensors 2023, 23(9), 4524; https://doi.org/10.3390/s23094524 - 6 May 2023
Viewed by 1876
Abstract
Blockchain has introduced a new era for online payment services and its economy with tamper-proof cryptocurrencies. However, blockchain, which is based on global peer-to-peer networks, has its limitations due to payment delays from global consensus and transaction costs for maintenance. Thus, payment channel [...] Read more.
Blockchain has introduced a new era for online payment services and its economy with tamper-proof cryptocurrencies. However, blockchain, which is based on global peer-to-peer networks, has its limitations due to payment delays from global consensus and transaction costs for maintenance. Thus, payment channel networks (PCN) have been proposed as one of the most promising off-chain solutions, allowing users to pay directly through payment channels (PC), with minimal blockchain involvement. However, payment delays and cost problems still exist, especially given the large size of the PCN. This study proposes a multiparty payment channel (MPC) that enables multiple users to join the same PC and exchange payment transactions, compared to the legacy PC. To avoid a consensus procedure among users in the PC, we introduce sequential and parallel updates for the PC status. Since increasing the MPC size limits the advantages in terms of the delay and cost, we propose a distributed coalition formation algorithm to form the MPC group, in which each user has the choice to join or leave the group. Simulations show that the proposed algorithm establishes MPCs successfully, considering the trade-off between the payoff gain and the MPC delay cost. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop