Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = multiobjective/multicriteria routing models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5404 KB  
Article
Multi-Source Joint Water Allocation and Route Interconnection Under Low-Flow Conditions: An IMWA-IRRS Framework for the Yellow River Water Supply Region Within Water Network Layout
by Mingzhi Yang, Xinyang Li, Keying Song, Rui Ma, Dong Wang, Jun He, Huan Jing, Xinyi Zhang and Liang Wang
Sustainability 2026, 18(3), 1541; https://doi.org/10.3390/su18031541 - 3 Feb 2026
Viewed by 42
Abstract
Under intensifying climate change and anthropogenic pressures, extreme low-flow events increasingly jeopardize water security in the Yellow River water supply region. This study develops the Inter-basin Multi-source Water Joint Allocation and Interconnected Routes Regulation System (IMWA-IRRS) to optimize spatiotemporal allocation of multi-source water [...] Read more.
Under intensifying climate change and anthropogenic pressures, extreme low-flow events increasingly jeopardize water security in the Yellow River water supply region. This study develops the Inter-basin Multi-source Water Joint Allocation and Interconnected Routes Regulation System (IMWA-IRRS) to optimize spatiotemporal allocation of multi-source water and simulate topological relationships in complex water networks. The model integrates system dynamics simulation with multi-objective optimization, validated through multi-criteria calibration using three performance indicators: correlation coefficient (R), Nash-Sutcliffe Efficiency (Ens), and percent bias (PBIAS). Application results demonstrated exceptional predictive performance in the study area: Monthly runoff simulations at four hydrological stations yielded R > 0.98 and Ens > 0.98 between simulated and observed data during both calibration and validation periods, with |PBIAS| < 10%; human-impacted runoff simulations at four hydrological stations achieved R > 0.8 between simulated and observed values, accompanied by PBIAS within ±10%; sectoral water consumption across the Yellow River Basin exhibited PBIAS < 5%, while source-specific water supply simulations maintained PBIAS generally within 10%. Comparative analysis revealed the IMWA-IRRS model achieves simulation performance comparable to the WEAP model for natural runoff, human-impacted runoff, water consumption, and water supply dynamics in the Yellow River Basin. The 2035 water allocation scheme for Yellow River water supply region projects total water supply of 59.691 billion m3 with an unmet water demand of 3.462 billion m3 under 75% low-flow conditions and 58.746 billion m3 with 4.407 billion m3 unmet demand under 95% low-flow conditions. Limited coverage of the South-to-North Water Diversion Project’s Middle and Eastern Routes constrains water supply security, necessitating future expansion of their service areas to leverage inter-route complementarity while implementing demand-side management strategies. Collectively, the IMWA-IRRS model provides a robust decision-support tool for refined water resources management in complex inter-basin diversion systems. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

46 pages, 1768 KB  
Review
Multiobjective Path Problems and Algorithms in Telecommunication Network Design—Overview and Trends
by José Craveirinha, João Clímaco, Rita Girão-Silva and Marta Pascoal
Algorithms 2024, 17(6), 222; https://doi.org/10.3390/a17060222 - 22 May 2024
Cited by 3 | Viewed by 2474
Abstract
A major area of application of multiobjective path problems and resolution algorithms is telecommunication network routing design, taking into account the extremely rapid technological and service evolutions. The need for explicit consideration of heterogeneous Quality of Service metrics makes it advantageous for the [...] Read more.
A major area of application of multiobjective path problems and resolution algorithms is telecommunication network routing design, taking into account the extremely rapid technological and service evolutions. The need for explicit consideration of heterogeneous Quality of Service metrics makes it advantageous for the development of routing models where various technical–economic aspects, often conflicting, should be tackled. Our work is focused on multiobjective path problem formulations and resolution methods and their applications to routing methods. We review basic concepts and present main formulations of multiobjective path problems, considering different types of objective functions. We outline the different types of resolution methods for these problems, including a classification and overview of relevant algorithms concerning different types of problems. Afterwards, we outline background concepts on routing models and present an overview of selected papers considered as representative of different types of applications of multiobjective path problem formulations and algorithms. A broad characterization of major types of path problems relevant in this context is shown regarding the overview of contributions in different technological and architectural network environments. Finally, we outline research trends in this area, in relation to recent technological evolutions in communication networks. Full article
Show Figures

Figure 1

18 pages, 4479 KB  
Article
Conceptual Design Optimization of Autonomous Electric Buses in Public Transportation
by Aditya Pathak, Silvan Scheuermann, Aybike Ongel and Markus Lienkamp
World Electr. Veh. J. 2021, 12(1), 30; https://doi.org/10.3390/wevj12010030 - 18 Feb 2021
Cited by 13 | Viewed by 5276
Abstract
Autonomous electric buses (AEB) have widely been envisioned in future public transportation systems due to their large potential to improve service quality while reducing operational costs. The requirements and specifications for AEBs, however, remain uncertain and strongly depend on the use case. To [...] Read more.
Autonomous electric buses (AEB) have widely been envisioned in future public transportation systems due to their large potential to improve service quality while reducing operational costs. The requirements and specifications for AEBs, however, remain uncertain and strongly depend on the use case. To enable the identification of the optimal vehicle specifications, this paper presents a holistic design optimization framework that explores the impacts of implementing different AEB concepts in a given set of routes/network. To develop the design optimization framework, first, a multi-objective, multi-criteria objective function is formulated by identifying the attributes of bus journeys that represent overall value to the stakeholders. Simulation models are then developed and implemented to evaluate the overall performance of the vehicle concepts. A genetic algorithm is used to find the concepts with the optimal trade-off between the overall value to the stakeholders and the total cost of ownership. A case study is presented of a single bus line in Singapore. The results show an improvement in the waiting time with the use of a smaller sized AEB with a capacity of 20 passengers. However, the costs and emissions increase due to the requirement of a larger fleet and the increase in daily distance traveled compared to a 94-passenger capacity AEB. Full article
Show Figures

Figure 1

Back to TopTop