Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = multi-walled BNNTs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2668 KB  
Article
2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines
by Mona Connolly, Emmanuel Flahaut and José María Navas
J. Xenobiot. 2025, 15(4), 97; https://doi.org/10.3390/jox15040097 - 24 Jun 2025
Viewed by 1192
Abstract
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. [...] Read more.
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. This study’s aim was to first identify if multi-walled nanotubes of BN could produce a hazard profile similar to that evidenced already for multi-walled carbon nanotubes (MWCNTs) and secondly if the material when present in a sheet-like structure increases or decreases the hazard profile. Fish are aquatic organisms sensitive to boron compounds; however, the potential hazard following exposure to BN and especially when present in such nanostructures has not yet been investigated. An in vitro testing platform consisting of multiple cell lines of the rainbow trout, Oncorhynchus mykiss (RTH-149, RTG-2, RTL-W1 and RTgill-W1), was used in a first-hazard screening approach for cytotoxicity and to gain information on material–cellular interaction. Clear differences were evidenced in material uptake, leading to plasma membrane disruption accompanied with a loss in metabolic activity for BNNTs at lower exposure concentrations compared to h-BN. As in the case of carbon nanotubes, close attention must be given to potential interferences with assays based on optical readouts. Full article
Show Figures

Graphical abstract

10 pages, 4674 KB  
Article
Development of 3D-Printed MWCNTs/AC/BNNTs Ternary Composite Electrode Material with High-Capacitance Performance
by Asrar Alam, Ghuzanfar Saeed, Seong Min Hong and Sooman Lim
Appl. Sci. 2021, 11(6), 2636; https://doi.org/10.3390/app11062636 - 16 Mar 2021
Cited by 18 | Viewed by 3193
Abstract
Activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) have been extensively investigated in recent decades as electrical double-layer capacitor (EDLC) electrode materials for supercapacitors, owing to their superior capacitive properties and cycling stability performance. However, in the modern electronics industry, ternary electrode materials [...] Read more.
Activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) have been extensively investigated in recent decades as electrical double-layer capacitor (EDLC) electrode materials for supercapacitors, owing to their superior capacitive properties and cycling stability performance. However, in the modern electronics industry, ternary electrode materials have been designed to develop high-performance and efficient energy storage devices. EDLC-based ternary materials are of great importance, where all the present components participate both individually and as a multicomponent electrode system to promote high-electrochemical performance electrode materials. In this study, we have incorporated an optimized content of boron nitride nanotube (BNNT) powder into a binary material composed of AC and MWCNTs to enhance their electrochemical performance using a pneumatic printer. The printed MWCNTs/AC/BNNTs ternary composite electrode material has shown a maximum specific capacitance of 262 F g−1 at a minimum current density of 1 A g−1, with a capacitance retention of 49.61% at a maximum current density of 10 A g−1. These results demonstrate that the printable MWCNTs/AC/BNNTs ternary composite electrode material is a potential candidate for the development of high-performance supercapacitors. Full article
(This article belongs to the Special Issue Printed Electronics Processing)
Show Figures

Graphical abstract

8 pages, 1458 KB  
Article
Direct Observation of Inner-Layer Inward Contractions of Multiwalled Boron Nitride Nanotubes upon in Situ Heating
by Zhongwen Li, Zi-An Li, Shuaishuai Sun, Dingguo Zheng, Hong Wang, Huanfang Tian, Huaixin Yang, Xuedong Bai and Jianqi Li
Nanomaterials 2018, 8(2), 86; https://doi.org/10.3390/nano8020086 - 4 Feb 2018
Cited by 10 | Viewed by 6282
Abstract
In situ heating transmission electron microscopy observations clearly reveal remarkable interlayer expansion and inner-layer inward contraction in multi-walled boron nitride nanotubes (BNNTs) as the specimen temperature increases. We interpreted the observed inward contraction as being due to the presence of the strong constraints [...] Read more.
In situ heating transmission electron microscopy observations clearly reveal remarkable interlayer expansion and inner-layer inward contraction in multi-walled boron nitride nanotubes (BNNTs) as the specimen temperature increases. We interpreted the observed inward contraction as being due to the presence of the strong constraints of the outer layers on radial expansion in the tubular structure upon in situ heating. The increase in specimen temperature upon heating can create pressure and stress toward the tubular center, which drive the lattice motion and yield inner diameter contraction for the multi-walled BNNTs. Using a simple model involving a wave-like pattern of layer-wise distortion, we discuss these peculiar structural alterations and the anisotropic thermal expansion properties of the tubular structures. Moreover, our in situ atomic images also reveal Russian-doll-type BN nanotubes, which show anisotropic thermal expansion behaviors. Full article
(This article belongs to the Special Issue Boron Nitride Nanostructures)
Show Figures

Graphical abstract

17 pages, 6248 KB  
Article
Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers
by Nadiim Domun, Keith R. Paton, Homayoun Hadavinia, Toby Sainsbury, Tao Zhang and Hibaaq Mohamud
Materials 2017, 10(10), 1179; https://doi.org/10.3390/ma10101179 - 19 Oct 2017
Cited by 81 | Viewed by 7706
Abstract
In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G [...] Read more.
In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly. Full article
(This article belongs to the Special Issue Improving Performance of Nanocomposite Materials)
Show Figures

Graphical abstract

19 pages, 6510 KB  
Review
Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate)
by Ana M. Diez-Pascual
Polymers 2017, 9(7), 260; https://doi.org/10.3390/polym9070260 - 30 Jun 2017
Cited by 48 | Viewed by 12060
Abstract
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties [...] Read more.
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), graphene oxide nanoribbons (GONR), graphite oxide nanoplatelets (GONP), polyethylene glycol-functionalized graphene oxide (PEG-GO), polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs) and hydroxyapatite (HA) nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications. Full article
(This article belongs to the Special Issue Advance of Polymers Applied to Biomedical Applications: Biointerface)
Show Figures

Figure 1

Back to TopTop