Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multi-instance deep learning (MIDL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1146 KB  
Article
Fuzzy Optimized Attention Network with Multi-Instance Deep Learning (FOAN-MIDL) for Alzheimer’s Disease Diagnosis with Structural Magnetic Resonance Imaging (sMRI)
by Afnan M. Alhassan and Nouf I. Altmami
Diagnostics 2025, 15(12), 1516; https://doi.org/10.3390/diagnostics15121516 - 14 Jun 2025
Viewed by 1066
Abstract
Background/Objectives: Alzheimer’s disease (AD) is the leading cause of dementia and is characterized by progressive neurodegeneration, resulting in cognitive impairment and structural brain changes. Although no curative treatment exists, pharmacological therapies like cholinesterase inhibitors and NMDA receptor antagonists may deliver symptomatic relief and [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) is the leading cause of dementia and is characterized by progressive neurodegeneration, resulting in cognitive impairment and structural brain changes. Although no curative treatment exists, pharmacological therapies like cholinesterase inhibitors and NMDA receptor antagonists may deliver symptomatic relief and modestly delay disease progression. Structural magnetic resonance imaging (sMRI) is a commonly utilized modality for the diagnosis of brain neurological diseases and may indicate abnormalities. However, improving the recognition of discriminative characteristics is the primary difficulty in diagnosis utilizing sMRI. Methods: To tackle this problem, the Fuzzy Optimized Attention Network with Multi-Instance Deep Learning (FOA-MIDL) system is presented for the prodromal phase of mild cognitive impairment (MCI) and the initial detection of AD. Results: An attention technique to estimate the weight of every case is presented: the fuzzy salp swarm algorithm (FSSA). The swarming actions of salps in oceans serve as the inspiration for the FSSA. When moving, the nutrient gradients influence the movement of leading salps during global search exploration, while the followers fully explore their local environment to adjust the classifiers’ parameters. To balance the relative contributions of every patch and produce a global distinct weighted image for the entire brain framework, the attention multi-instance learning (MIL) pooling procedure is developed. Attention-aware global classifiers are presented to improve the understanding of the integral characteristics and form judgments for AD-related categorization. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker, and Lifestyle Flagship Study on Ageing (AIBL) provided the two datasets (ADNI and AIBL) utilized in this work. Conclusions: Compared to many cutting-edge techniques, the findings demonstrate that the FOA-MIDL system may determine discriminative pathological areas and offer improved classification efficacy in terms of sensitivity (SEN), specificity (SPE), and accuracy. Full article
Show Figures

Figure 1

14 pages, 1726 KB  
Article
Enhanced Fuzzy Elephant Herding Optimization-Based OTSU Segmentation and Deep Learning for Alzheimer’s Disease Diagnosis
by Afnan M. Alhassan, The Alzheimer’s Disease Neuroimaging Initiative and The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing
Mathematics 2022, 10(8), 1259; https://doi.org/10.3390/math10081259 - 11 Apr 2022
Cited by 19 | Viewed by 3024
Abstract
Several neurological illnesses and diseased sites have been studied, along with the anatomical framework of the brain, using structural MRI (sMRI). It is critical to diagnose Alzheimer’s disease (AD) patients in a timely manner to implement preventative treatments. The segmentation of brain anatomy [...] Read more.
Several neurological illnesses and diseased sites have been studied, along with the anatomical framework of the brain, using structural MRI (sMRI). It is critical to diagnose Alzheimer’s disease (AD) patients in a timely manner to implement preventative treatments. The segmentation of brain anatomy and categorization of AD have received increased attention since they can deliver good findings spanning a vast range of information. The first research gap considered in this work is the real-time efficiency of OTSU segmentation, which is not high, despite its simplicity and good accuracy. A second issue is that feature extraction could be automated by implementing deep learning techniques. To improve picture segmentation’s real-timeliness, enhanced fuzzy elephant herding optimization (EFEHO) was used for OTSU segmentation, and named EFEHO-OTSU. The main contribution of this work is twofold. One is utilizing EFEHO in the recommended technique to seek the optimal segmentation threshold for the OTSU method. Second, dual attention multi-instance deep learning network (DA-MIDL) is recommended for the timely diagnosis of AD and its prodromal phase, mild cognitive impairment (MCI). Tests show that this technique converges faster and takes less time than the classic OTSU approach without reducing segmentation performance. This study develops a valuable tool for quick picture segmentation with good real-time efficiency. Compared to numerous conventional techniques, the suggested study attains improved categorization performance regarding accuracy and transferability. Full article
Show Figures

Figure 1

Back to TopTop