Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = multi-dimensional hybrid gated attention mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4558 KiB  
Article
Remaining Useful Life Prediction of Rolling Bearings Based on an Improved U-Net and a Multi-Dimensional Hybrid Gated Attention Mechanism
by Hengdi Wang and Aodi Shi
Appl. Sci. 2025, 15(13), 7166; https://doi.org/10.3390/app15137166 - 25 Jun 2025
Viewed by 466
Abstract
In practical scenarios, rolling bearing vibration signals suffer from detail loss, and information loss occurs during feature dimensionality reduction and fusion, leading to inaccurate life prediction results. To address these issues, this paper first proposes a method for predicting the remaining useful life [...] Read more.
In practical scenarios, rolling bearing vibration signals suffer from detail loss, and information loss occurs during feature dimensionality reduction and fusion, leading to inaccurate life prediction results. To address these issues, this paper first proposes a method for predicting the remaining useful life (RUL) of bearings, which combines an improved U-Net for enhancing vibration signals and a multi-dimensional hybrid gated attention mechanism (MHGAM) for dynamic feature fusion. The enhanced U-Net effectively suppresses the loss of signal details, while the MHGAM adaptively constructs health indices through multi-dimensional weighting, significantly improving prediction accuracy. Initially, the improved U-Net is utilized for signal preprocessing. By comprehensively considering both channel and spatial dimensions, the MHGAM dynamically assigns fusion weights across different dimensions to construct a health index. Subsequently, the health index is used as input for the Bi-GRU network model to obtain the remaining life prediction results. Finally, comparative analyses between the proposed method and other RUL prediction methods are conducted using the IEEE PHM 2012 bearing dataset (Condition 1: rotational speed 1800 r/min with radial load 4000 N; Condition 2: rotational speed 1650 r/min with radial load 4200 N) and engineering test data (rotational speed 1800 r/min with radial load 4000 N). Experimental results from the IEEE PHM 2012 bearing dataset indicate that this method achieves a low mean root mean square error (RMSE = 0.0504) and mean absolute error (MAE = 0.0239). The engineering test verification results demonstrate that the mean values of RMSE and MAE for this method are 7.8% lower than those of the CNN-BiGRU benchmark model and 14.6% lower than those of the TCN-BiGRU model, respectively. In terms of comprehensive prediction performance scores, the average scores improve by 7.8% and 9.3 percentage points compared with the two benchmark models, respectively. Under various test conditions, the prediction results of this method exhibit commendable comprehensive performance, significantly enhancing the prediction accuracy of bearing remaining useful life. Full article
Show Figures

Figure 1

32 pages, 4876 KiB  
Article
Research on Network Intrusion Detection Model Based on Hybrid Sampling and Deep Learning
by Derui Guo and Yufei Xie
Sensors 2025, 25(5), 1578; https://doi.org/10.3390/s25051578 - 4 Mar 2025
Cited by 1 | Viewed by 2043
Abstract
This study proposes an enhanced network intrusion detection model, 1D-TCN-ResNet-BiGRU-Multi-Head Attention (TRBMA), aimed at addressing the issues of incomplete learning of temporal features and low accuracy in the classification of malicious traffic found in existing models. The TRBMA model utilizes Temporal Convolutional Networks [...] Read more.
This study proposes an enhanced network intrusion detection model, 1D-TCN-ResNet-BiGRU-Multi-Head Attention (TRBMA), aimed at addressing the issues of incomplete learning of temporal features and low accuracy in the classification of malicious traffic found in existing models. The TRBMA model utilizes Temporal Convolutional Networks (TCNs) to improve the ResNet18 architecture and incorporates Bidirectional Gated Recurrent Units (BiGRUs) and Multi-Head Self-Attention mechanisms to enhance the comprehensive learning of temporal features. Additionally, the ResNet network is adapted into a one-dimensional version that is more suitable for processing time-series data, while the AdamW optimizer is employed to improve the convergence speed and generalization ability during model training. Experimental results on the CIC-IDS-2017 dataset indicate that the TRBMA model achieves an accuracy of 98.66% in predicting malicious traffic types, with improvements in precision, recall, and F1-score compared to the baseline model. Furthermore, to address the challenge of low identification rates for malicious traffic types with small sample sizes in unbalanced datasets, this paper introduces TRBMA (BS-OSS), a variant of the TRBMA model that integrates Borderline SMOTE-OSS hybrid sampling. Experimental results demonstrate that this model effectively identifies malicious traffic types with small sample sizes, achieving an overall prediction accuracy of 99.88%, thereby significantly enhancing the performance of the network intrusion detection model. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 6880 KiB  
Article
Multi-Dimensional Global Temporal Predictive Model for Multi-State Prediction of Marine Diesel Engines
by Liyong Ma, Siqi Chen, Shuli Jia, Yong Zhang and Hai Du
J. Mar. Sci. Eng. 2024, 12(8), 1370; https://doi.org/10.3390/jmse12081370 - 11 Aug 2024
Cited by 1 | Viewed by 1315
Abstract
The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep [...] Read more.
The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines. Full article
Show Figures

Figure 1

20 pages, 4096 KiB  
Article
A Depression Diagnosis Method Based on the Hybrid Neural Network and Attention Mechanism
by Zhuozheng Wang, Zhuo Ma, Wei Liu, Zhefeng An and Fubiao Huang
Brain Sci. 2022, 12(7), 834; https://doi.org/10.3390/brainsci12070834 - 26 Jun 2022
Cited by 16 | Viewed by 3898
Abstract
Depression is a common but easily misdiagnosed disease when using a self-assessment scale. Electroencephalograms (EEGs) provide an important reference and objective basis for the identification and diagnosis of depression. In order to improve the accuracy of the diagnosis of depression by using mainstream [...] Read more.
Depression is a common but easily misdiagnosed disease when using a self-assessment scale. Electroencephalograms (EEGs) provide an important reference and objective basis for the identification and diagnosis of depression. In order to improve the accuracy of the diagnosis of depression by using mainstream algorithms, a high-performance hybrid neural network depression detection method is proposed in this paper combined with deep learning technology. Firstly, a concatenating one-dimensional convolutional neural network (1D-CNN) and gated recurrent unit (GRU) are employed to extract the local features and to determine the global features of the EEG signal. Secondly, the attention mechanism is introduced to form the hybrid neural network. The attention mechanism assigns different weights to the multi-dimensional features extracted by the network, so as to screen out more representative features, which can reduce the computational complexity of the network and save the training time of the model while ensuring high precision. Moreover, dropout is applied to accelerate network training and address the over-fitting problem. Experiments reveal that the 1D-CNN-GRU-ATTN model has more effectiveness and a better generalization ability compared with traditional algorithms. The accuracy of the proposed method in this paper reaches 99.33% in a public dataset and 97.98% in a private dataset, respectively. Full article
(This article belongs to the Special Issue Advances in EEG Brain Dynamics)
Show Figures

Figure 1

13 pages, 1983 KiB  
Article
Deep Learning with Word Embedding Improves Kazakh Named-Entity Recognition
by Gulizada Haisa and Gulila Altenbek
Information 2022, 13(4), 180; https://doi.org/10.3390/info13040180 - 2 Apr 2022
Cited by 9 | Viewed by 3882
Abstract
Named-entity recognition (NER) is a preliminary step for several text extraction tasks. In this work, we try to recognize Kazakh named entities by introducing a hybrid neural network model that leverages word semantics with multidimensional features and attention mechanisms. There are two major [...] Read more.
Named-entity recognition (NER) is a preliminary step for several text extraction tasks. In this work, we try to recognize Kazakh named entities by introducing a hybrid neural network model that leverages word semantics with multidimensional features and attention mechanisms. There are two major challenges: First, Kazakh is an agglutinative and morphologically rich language that presents a challenge for NER due to data sparsity. The other is that Kazakh named entities have unclear boundaries, polysemy, and nesting. A common strategy to handle data sparsity is to apply subword segmentation. Thus, we combined the semantics of words and stems by stemming from the Kazakh morphological analysis system. Additionally, we constructed a graph structure of entities, with words, entities, and entity categories as nodes and inclusion relations as edges, and updated nodes using a gated graph neural network (GGNN) with an attention mechanism. Finally, through the conditional random field (CRF), we extracted the final results. Experimental results show that our method consistently outperforms all previous methods by 88.04% in terms of F1 scores. Full article
(This article belongs to the Topic Big Data and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop