Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = multi-UUV sensor networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1431 KB  
Article
Three-Dimensional Rendezvous Controls of Multiple Robots with Amplitude-Only Measurements in Cluttered Underwater Environments
by Jonghoek Kim
Appl. Sci. 2023, 13(7), 4130; https://doi.org/10.3390/app13074130 - 24 Mar 2023
Cited by 1 | Viewed by 1981
Abstract
This study addresses multi-robot distributed rendezvous controls in cluttered underwater environments with many unknown obstacles. In underwater environments, a Unmanned Underwater Vehicle (UUV) cannot localize itself, since a Global Positioning System (GPS) is not available. Assume that each UUV has multiple signal intensity [...] Read more.
This study addresses multi-robot distributed rendezvous controls in cluttered underwater environments with many unknown obstacles. In underwater environments, a Unmanned Underwater Vehicle (UUV) cannot localize itself, since a Global Positioning System (GPS) is not available. Assume that each UUV has multiple signal intensity sensors surrounding it. Multiple intensity sensors on a UUV can only measure the amplitude of signals generated from its neighbor UUVs. We prove that multiple UUVs with bounded speed converge to a designated rendezvous point, while maintaining the connectivity of the communication network. This study further discusses a fault detection method, which detects faulty UUVs based on local sensing measurements. In addition, the proposed rendezvous control is adaptive to communication link failure or invisible UUVs. Note that communication link failure or invisible UUVs can happen due to unknown obstacles in the workspace. As far as we know, our study is novel in developing 3D coordinate-free distributed rendezvous control, considering underwater robots that can only measure the amplitude of signals emitted from neighboring robots. The proposed rendezvous algorithms are provably complete, and the effectiveness of the proposed rendezvous algorithms is demonstrated under MATLAB simulations. Full article
(This article belongs to the Special Issue Advances in Robot Path Planning, Volume II)
Show Figures

Figure 1

24 pages, 9471 KB  
Article
Sidescan Only Neural Bathymetry from Large-Scale Survey
by Yiping Xie, Nils Bore and John Folkesson
Sensors 2022, 22(14), 5092; https://doi.org/10.3390/s22145092 - 6 Jul 2022
Cited by 10 | Viewed by 3266
Abstract
Sidescan sonar is a small and low-cost sensor that can be mounted on most unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs). It has the advantages of high resolution and wide coverage, which could be valuable in providing an efficient and cost-effective [...] Read more.
Sidescan sonar is a small and low-cost sensor that can be mounted on most unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs). It has the advantages of high resolution and wide coverage, which could be valuable in providing an efficient and cost-effective solution for obtaining the bathymetry when bathymetric data are unavailable. This work proposes a method of reconstructing bathymetry using only sidescan data from large-scale surveys by formulating the problem as a global optimization, where a Sinusoidal Representation Network (SIREN) is used to represent the bathymetry and the albedo and the beam profile are jointly estimated based on a Lambertian scattering model. The assessment of the proposed method is conducted by comparing the reconstructed bathymetry with the bathymetric data collected with a high-resolution multi-beam echo sounder (MBES). An error of 20 cm on the bathymetry is achieved from a large-scale survey. The proposed method proved to be an effective way to reconstruct bathymetry from sidescan sonar data when high-accuracy positioning is available. This could be of great use for applications such as surface vehicles with Global Navigation Satellite System (GNSS) to obtain high-quality bathymetry in shallow water or small autonomous underwater vehicles (AUVs) if simultaneous localization and mapping (SLAM) can be applied to correct the navigation estimate. Full article
(This article belongs to the Special Issue Underwater Robotics in 2022-2023)
Show Figures

Figure 1

24 pages, 5120 KB  
Article
Leader-Follower Formation Control of UUVs with Model Uncertainties, Current Disturbances, and Unstable Communication
by Zheping Yan, Da Xu, Tao Chen, Wei Zhang and Yibo Liu
Sensors 2018, 18(2), 662; https://doi.org/10.3390/s18020662 - 23 Feb 2018
Cited by 52 | Viewed by 6850
Abstract
Unmanned underwater vehicles (UUVs) have rapidly developed as mobile sensor networks recently in the investigation, survey, and exploration of the underwater environment. The goal of this paper is to develop a practical and efficient formation control method to improve work efficiency of multi-UUV [...] Read more.
Unmanned underwater vehicles (UUVs) have rapidly developed as mobile sensor networks recently in the investigation, survey, and exploration of the underwater environment. The goal of this paper is to develop a practical and efficient formation control method to improve work efficiency of multi-UUV sensor networks. Distributed leader-follower formation controllers are designed based on a state feedback and consensus algorithm. Considering that each vehicle is subject to model uncertainties and current disturbances, a second-order integral UUV model with a nonlinear function is established using the state feedback linearized method under current disturbances. For unstable communication among UUVs, communication failure and acoustic link noise interference are considered. Two-layer random switching communication topologies are proposed to solve the problem of communication failure. For acoustic link noise interference, accurate representation of valid communication information and noise stripping when designing controllers is necessary. Effective communication topology weights are designed to represent the validity of communication information interfered by noise. Utilizing state feedback and noise stripping, sufficient conditions for design formation controllers are proposed to ensure UUV formation achieves consensus under model uncertainties, current disturbances, and unstable communication. The stability of formation controllers is proven by the Lyapunov-Razumikhin theorem, and the validity is verified by simulation results. Full article
Show Figures

Graphical abstract

Back to TopTop