Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = mucolytic expectorant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2143 KiB  
Article
Optimized Enzymatic Extraction of Phenolic Compounds from Verbascum nigrum L.: A Sustainable Approach for Enhanced Extraction of Bioactive Compounds
by Filippo Brienza, Luca Calani, Letizia Bresciani, Pedro Mena and Silvia Rapacioli
Appl. Sci. 2025, 15(3), 1405; https://doi.org/10.3390/app15031405 - 29 Jan 2025
Viewed by 1106
Abstract
Verbascum nigrum, commonly known as black mullein, is widely used in traditional medicine for its expectorant, mucolytic, sedative, and diuretic properties. This study aimed to develop and optimize a standardized method for extracting phenolic compounds from V. nigrum using enzymatic pretreatment followed [...] Read more.
Verbascum nigrum, commonly known as black mullein, is widely used in traditional medicine for its expectorant, mucolytic, sedative, and diuretic properties. This study aimed to develop and optimize a standardized method for extracting phenolic compounds from V. nigrum using enzymatic pretreatment followed by solvent extraction. Enzymatic treatment does not rely on harmful solvents and is a low energy-intensive process, making it a suitable green technology for the food, cosmetic, and pharmaceutical industries. The research explored the use of different lignocellulolytic enzymes, including pectinase, cellulase, α-amylase, and xylanase, to break down plant cell walls, enhancing the release and bioaccessibility of active compounds. The two-step extraction process proposed combined enzymatic pretreatment and hydroalcoholic extraction, resulting in a considerably improved yield of phenolic compounds (24 mg/g DM). Analytical characterization using a high-performance liquid chromatography (HPLC) system coupled with a diode-array-detector (DAD) and ultra-high-performance liquid chromatography (UHPLC) coupled with DAD and tandem mass spectrometry (MS/MS) revealed a higher concentration of target bioactive compounds in enzymatically treated extracts compared to traditional methods, including phenolic derivatives (e.g., caffeic acid, p-coumaric acid, and verbascoside), and flavonoids (e.g., luteolin). Up to 22 phenolic and flavonoid compounds were characterized. This study provides new insight into the potential of enzymatic extraction as a green and efficient alternative to conventional extraction methods, for the production of high-quality herbal products richer in (poly)phenolic compounds, highlighting its potential for industrial applications. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

22 pages, 2222 KiB  
Article
Protective Effects of Atractylodis Rhizoma Extracts on Lung Injury Induced by Particulate Matter 2.5 in Mice
by Eun-Hee Yun, Khawaja Muhammad Imran Bashir, Jeongjun Lee, Hunsuk Chung, Young-Sam Kwon, Jae-Suk Choi and Sae-Kwang Ku
Antioxidants 2025, 14(2), 127; https://doi.org/10.3390/antiox14020127 - 23 Jan 2025
Cited by 2 | Viewed by 1242
Abstract
This study investigated the lung-protective effects of Atractylodis Rhizoma extracts (the root of Atractylodes japonica Koidz. ex Kitam), known as AJ extracts, in mitigating subacute pulmonary injuries caused by particulate matter 2.5 (PM2.5) exposure in Balb/c mice. AJ was given orally [...] Read more.
This study investigated the lung-protective effects of Atractylodis Rhizoma extracts (the root of Atractylodes japonica Koidz. ex Kitam), known as AJ extracts, in mitigating subacute pulmonary injuries caused by particulate matter 2.5 (PM2.5) exposure in Balb/c mice. AJ was given orally at concentrations of 400, 200, and 100 mg/kg, demonstrating a promising impact by mitigating oxidative stress and inflammation associated with phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and p38 mitogen-activated protein kinase α (p38 MAPKα) pathways and reducing mucus overproduction. These protective effects were achieved through the downregulation of p38 MAPKα and PI3K/Akt mRNA expressions, enhanced anti-inflammatory and antioxidant activities, and increased mucolytic expectorant effects arbitrated by elevated lung acetylcholine (ACh) and substance P levels, along with decreased mRNA expressions of MUC5AC and MUC5B. Importantly, these outcomes occurred without significant hepatotoxicity. While all AJ dosages provided dose-dependent pulmonary protection, their effects were less pronounced than those of dexamethasone (DEXA) at 0.75 mg/kg. However, AJ uniquely exhibited mucolytic expectorant activities absent in DEXA-treated mice. The results indicate that A. japonica may serve as a potential candidate for creating alternative treatments for respiratory conditions or as an ingredient in functional foods. Full article
Show Figures

Figure 1

25 pages, 7854 KiB  
Article
Expectorant Effects of Atractylodes japonica Koidz. ex Kitam Root Extracts on Particulate Matter-Induced Pulmonary Injury in Mice
by Junho Lee, Sana Mansoor, Jeongjun Lee, Hunsuk Chung, Young-Sam Kwon, Khawaja Muhammad Imran Bashir, Jae-Suk Choi and Sae-Kwang Ku
Appl. Sci. 2025, 15(1), 99; https://doi.org/10.3390/app15010099 - 26 Dec 2024
Cited by 1 | Viewed by 1094
Abstract
This study investigated the growing environmental concern of particulate matter (PM)-induced pulmonary injury and explored novel preventive strategies. In particular, it evaluated the protective effects of Atractylodes japonica Koidz. ex. Kitam root extract (AJ), which is known for its anti-inflammatory and antioxidant properties, [...] Read more.
This study investigated the growing environmental concern of particulate matter (PM)-induced pulmonary injury and explored novel preventive strategies. In particular, it evaluated the protective effects of Atractylodes japonica Koidz. ex. Kitam root extract (AJ), which is known for its anti-inflammatory and antioxidant properties, against PM2.5-induced subacute pulmonary injuries in Balb/c mice. The experimental design involved administering AJ at a concentration from 400 to 100 mg/kg over a ten-day period, with comparisons made to the mucolytic agent ambroxol hydrochloride (AX). The results revealed that AJ significantly alleviated PM2.5-induced pulmonary injuries, mucus overproduction, and respiratory acidosis in a dose-dependent manner. Notably, body surface redness was reduced by up to 55% at a concentration of 100 mg/kg compared to the control. These effects were evidenced by reduced mRNA expression of the mucus-associated genes MUC5B and MUC5AC and increased concentrations of substance P (up to 475%) and acetylcholine (up to 355%) in the lungs at 400 mg/kg, compared to the intact vehicle control. Particularly, the 400 mg/kg dose of AJ demonstrated comparable effectiveness to AX, highlighting its potent mucolytic and expectorant activities. The results of this study highlight the fact that AJ could act as a promising alternative for respiratory protection, with potential applications as a functional food ingredient. This study substantiates AJ’s role in enhancing respiratory health, emphasizing its capacity as a candidate for further development into therapeutic agents against toxic environmental exposure. Full article
Show Figures

Figure 1

32 pages, 1178 KiB  
Review
Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications
by Chhavi Sharma, Alexander Osmolovskiy and Rajni Singh
Pharmaceutics 2021, 13(11), 1880; https://doi.org/10.3390/pharmaceutics13111880 - 5 Nov 2021
Cited by 50 | Viewed by 8860
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the [...] Read more.
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes. Full article
(This article belongs to the Special Issue Targeted Proteolytic Enzymes as Biomedicals and Biopharmaceutics)
Show Figures

Figure 1

20 pages, 12989 KiB  
Article
S-Carboxymethyl Cysteine Protects against Oxidative Stress and Mitochondrial Impairment in a Parkinson’s Disease In Vitro Model
by Mariano Catanesi, Laura Brandolini, Michele d’Angelo, Maria Grazia Tupone, Elisabetta Benedetti, Margherita Alfonsetti, Massimiliano Quintiliani, Maddalena Fratelli, Daniela Iaconis, Annamaria Cimini, Vanessa Castelli and Marcello Allegretti
Biomedicines 2021, 9(10), 1467; https://doi.org/10.3390/biomedicines9101467 - 14 Oct 2021
Cited by 12 | Viewed by 3448
Abstract
The mucolytic agent S-carboxymethylcysteine is widely used as an expectorant for the treatment of numerous respiratory disorders. The metabolic fate of S-carboxymethyl-L-cysteine is complex. Several clinical studies have demonstrated that the metabolism of this agent differs within the same individual, with sulfur oxygenated [...] Read more.
The mucolytic agent S-carboxymethylcysteine is widely used as an expectorant for the treatment of numerous respiratory disorders. The metabolic fate of S-carboxymethyl-L-cysteine is complex. Several clinical studies have demonstrated that the metabolism of this agent differs within the same individual, with sulfur oxygenated metabolites generated upon night-time administration. It has been indicated that this drug behaves like a free radical scavenger and that, in this regard, the sulfide is the active species with sulphoxide metabolites (already oxidized) being inactive. Consequently, a night-time consumption of the drug should be more effective upon daytime administration. Still, this diurnal variation in biotransformation (deactivation) is dependent on the genetic polymorphism on which relies the patient population capacities of S-carboxymethyl-L-cysteine sulphoxidation. It has been reported that those cohorts who are efficient sulfur oxidizers will generate inactive oxygenated metabolites. In contrast, those who have a relative deficiency in this mechanism will be subjected to the active sulfide for a more extended period. In this regard, it is noteworthy that 38–39% of Parkinson’s disease patients belong to the poor sulphoxide cohort, being exposed to higher levels of active sulfide, the active antioxidant metabolite of S-carboxymethyl-L-cysteine. Parkinson’s disease is a neurodegenerative disorder that affects predominately dopaminergic neurons. It has been demonstrated that oxidative stress and mitochondrial dysfunction play a crucial role in the degeneration of dopaminergic neurons. Based on this evidence, in this study, we evaluated the effects of S-carboxymethyl cysteine in an in vitro model of Parkinson’s disease in protecting against oxidative stress injury. The data obtained suggested that an S-carboxymethylcysteine-enriched diet could be beneficial during aging to protect neurons from oxidative imbalance and mitochondrial dysfunction, thus preventing the progression of neurodegenerative processes. Full article
Show Figures

Figure 1

32 pages, 1061 KiB  
Review
Rose Flowers—A Delicate Perfume or a Natural Healer?
by Milka Mileva, Yana Ilieva, Gabriele Jovtchev, Svetla Gateva, Maya Margaritova Zaharieva, Almira Georgieva, Lyudmila Dimitrova, Ana Dobreva, Tsveta Angelova, Nelly Vilhelmova-Ilieva, Violeta Valcheva and Hristo Najdenski
Biomolecules 2021, 11(1), 127; https://doi.org/10.3390/biom11010127 - 19 Jan 2021
Cited by 91 | Viewed by 23640
Abstract
Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., [...] Read more.
Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

11 pages, 758 KiB  
Article
Evaluation of a New Culture Protocol for Enhancing Fungal Detection Rates in Respiratory Samples of Cystic Fibrosis Patients
by Tobias G.P. Engel, Marlou Tehupeiory-Kooreman, Willem J.G. Melchers, Monique H. Reijers, Peter Merkus and Paul E. Verweij
J. Fungi 2020, 6(2), 82; https://doi.org/10.3390/jof6020082 - 9 Jun 2020
Cited by 14 | Viewed by 3438
Abstract
Cystic fibrosis (CF) can be complicated by fungal infection of the respiratory tract. Fungal detection rates in CF sputa are highly dependent on the culture protocol and incubation conditions and thus may lead to an underestimation of the true prevalence of fungal colonization. [...] Read more.
Cystic fibrosis (CF) can be complicated by fungal infection of the respiratory tract. Fungal detection rates in CF sputa are highly dependent on the culture protocol and incubation conditions and thus may lead to an underestimation of the true prevalence of fungal colonization. We conducted a prospective study to evaluate the additional value of mucolytic pre-treatment, increased inoculum (100 μL), additional fungal culture media (Sabouraud agar; SAB, Medium B+, Scedosporium selective agar; SceSel+ and Dichloran-Glycerol agar; DG18) and longer incubation time (3 weeks) compared with our current protocol. Using the new protocol, we prospectively analyzed 216 expectorated sputum samples from adult and pediatric CF patients (n = 77) and compared the culture yield to a three year retrospective cohort that used direct 10 μL loop inoculation on SAB with 5 days incubation (867 sputum samples/103 patients). Detection rates for molds increased from 42% to 76% (p < 0.0001). Twenty-six percent of cultures were polymicrobial in the prospective cohort as opposed to 4.7% in the retrospective cohort (p < 0.0001). Colonization rate with A. fumigatus increased from 36% to 57%. SAB and DG18 showed the highest detection rates for all molds (SAB 58.6%; DG18 56.9%) and DG18 had the best performance for molds other than A. fumigatus. The larger sample volume and longer incubation also contributed to the increased recovery of molds. The introduction of a modified fungal culture protocol leads to a major increase in detection rate and the diversity of molds, which influences fungal epidemiology and may have implications for treatment decisions. Full article
Show Figures

Figure 1

13 pages, 1292 KiB  
Review
Nebulised N-Acetylcysteine for Unresponsive Bronchial Obstruction in Allergic Brochopulmonary Aspergillosis: A Case Series and Review of the Literature
by Akaninyene Otu, Philip Langridge and David W. Denning
J. Fungi 2018, 4(4), 117; https://doi.org/10.3390/jof4040117 - 15 Oct 2018
Cited by 11 | Viewed by 7217
Abstract
Many chronic lung diseases are characterized by the hypersecretion of mucus. In these conditions, the administration of mucoactive agents is often indicated as adjuvant therapy. N-acetylcysteine (NAC) is a typical example of a mucolytic agent. A retrospective review of patients with pulmonary [...] Read more.
Many chronic lung diseases are characterized by the hypersecretion of mucus. In these conditions, the administration of mucoactive agents is often indicated as adjuvant therapy. N-acetylcysteine (NAC) is a typical example of a mucolytic agent. A retrospective review of patients with pulmonary aspergillosis treated at the National Aspergillosis Centre in Manchester, United Kingdom, with NAC between November 2015 and November 2017 was carried out. Six Caucasians with Aspergillus lung disease received NAC to facilitate clearance of their viscid bronchial mucus secretions. One patient developed immediate bronchospasm on the first dose and could not be treated. Of the remainder, two (33%) derived benefit, with increased expectoration and reduced symptoms. Continued response was sustained over 6–7 months, without any apparent toxicity. In addition, a systematic review of the literature is provided to analyze the utility of NAC in the management of respiratory conditions which have unresponsive bronchial obstruction as a feature. Full article
Show Figures

Figure 1

Back to TopTop