Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = movable and immovable edges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7496 KB  
Article
The Behavior of Long Thin Rectangular Plates under Normal Pressure—A Thorough Investigation
by Gilad Hakim and Haim Abramovich
Materials 2024, 17(12), 2902; https://doi.org/10.3390/ma17122902 - 13 Jun 2024
Cited by 3 | Viewed by 1466
Abstract
Thin rectangular plates are considered basic structures in various sectors like aerospace, civil, and mechanical engineering. Moreover, isotropic and laminated composite plates subjected to transverse normal loading and undergoing small and large deflections have been extensively studied and published in the literature. Yet, [...] Read more.
Thin rectangular plates are considered basic structures in various sectors like aerospace, civil, and mechanical engineering. Moreover, isotropic and laminated composite plates subjected to transverse normal loading and undergoing small and large deflections have been extensively studied and published in the literature. Yet, it seems that the particular case of long thin plates having a high aspect ratio appears to be almost ignored by various scholars despite its engineering importance. The present study tries to fill this gap, yielding novel findings regarding the structural behavior of long thin plates in the small- and large-deflection regimes. In contrast to what is normally assumed in the literature, namely that a long plate with a high aspect ratio can be considered an infinitely long plate, the present results clearly show that the structural effects of the ends continue to exist near the remote ends of the long plate. An innovative finding is that long plates would (only on movable boundary conditions for the large-deflection regime) exhibit a larger mid-width displacement in comparison with deflections of infinitely long plates. This innovative higher deflection appears for both small and large-deflection regimes for both all-around simply supported and all-around clamped boundary conditions. This new finding was shown to be valid for both isotropic and orthotropic materials and presents a novel engineering approach for the old assumption well quoted in the literature that a relatively long plate on any boundary condition can be considered an infinite plate. Based on the present research, it is recommended that this assumption should be used carefully as the largest plate mid-deflection might occur at finite aspect ratios. Full article
Show Figures

Figure 1

26 pages, 51246 KB  
Article
Large Deflections of Thin-Walled Plates under Transverse Loading—Investigation of the Generated In-Plane Stresses
by Gilad Hakim and Haim Abramovich
Materials 2022, 15(4), 1577; https://doi.org/10.3390/ma15041577 - 20 Feb 2022
Cited by 17 | Viewed by 6161
Abstract
Thin-walled plates subjected to transverse loading undergoing large deflection have been the topic of a large number of studies. However, there is still a lack of information about the nature and the distribution membrane stresses generated under large deflections. The purpose of this [...] Read more.
Thin-walled plates subjected to transverse loading undergoing large deflection have been the topic of a large number of studies. However, there is still a lack of information about the nature and the distribution membrane stresses generated under large deflections. The purpose of this paper is to calculate and display the distribution of the generated stresses and the respective deflections on the entire rectangular plate area. Finite element analysis results for thin-walled plates with aspect ratios of 1, 2 and 5, on movable and immovable edges simply supported and clamped boundary conditions are clearly visualized. The distribution of the normal and shear stresses enables a good understanding of the plate critical points locations. It was found that strong tensile and compressive membrane stresses exist at various points near the plate edges, creating potential failure hazards. Full article
Show Figures

Figure 1

Back to TopTop