Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mountain big sagebrush

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1979 KiB  
Article
Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance
by Thomas A. Bridges-Lyman, Jessi L. Brown, Jeanne C. Chambers, Lisa M. Ellsworth, Matthew C. Reeves, Karen C. Short, Eva K. Strand and Michael H. Taylor
Land 2024, 13(12), 2131; https://doi.org/10.3390/land13122131 - 9 Dec 2024
Viewed by 970
Abstract
The concepts of resilience and resistance (R&R) have been used to improve wildland fuel treatment outcomes by identifying parts of the landscape that are more likely to respond well to treatment. This study examined how the economic benefits and costs of fuel treatments [...] Read more.
The concepts of resilience and resistance (R&R) have been used to improve wildland fuel treatment outcomes by identifying parts of the landscape that are more likely to respond well to treatment. This study examined how the economic benefits and costs of fuel treatments in sagebrush (Artemisia spp.) ecosystems varied with the resilience and resistance properties of the treatment site. Generalized ecological models were developed for the economic analysis of fuel treatments that integrated ecological succession, annual grass invasion, pinyon–juniper expansion, and wildfire to simulate ecosystem dynamics over time. The models incorporated resilience and resistance by varying model parameters related to each plant community’s ability to resist annual grass invasion and recover post-disturbance. Simulations produced estimates of the expected (ex ante) benefit–cost ratio for each treatment. The approach also considered the benefits associated with the system remaining in an ecologically favorable condition, allowing us to report a more holistic measure of the net economic benefits of fuel treatments. The results from the simulations indicated fuel treatment was economically efficient in late-successional sagebrush and early-successional juniper in mountain big sagebrush associations. For sagebrush associations where treatment was economically efficient, higher R&R status sites had higher benefit–cost ratios. The results suggested that treatment costs were more determinative of economic efficiency than treatment benefits. Full article
Show Figures

Figure 1

13 pages, 5994 KiB  
Article
Water Uptake by Mountain Big Sagebrush (Artemisia tridentata subsp. vaseyana) and Environmental Variables Affecting Water Availability in Semiarid Rangeland Ecosystems
by Carlos G. Ochoa, Mohamed A. B. Abdallah and Daniel G. Gómez
Hydrology 2024, 11(6), 85; https://doi.org/10.3390/hydrology11060085 - 19 Jun 2024
Cited by 1 | Viewed by 1443
Abstract
The sagebrush steppe ecosystem plays a critical role in water cycling in arid and semiarid landscapes of the western United States; yet, there is limited information regarding individual sagebrush plant water uptake. We used the stem heat balance (SHB) method to measure transpiration [...] Read more.
The sagebrush steppe ecosystem plays a critical role in water cycling in arid and semiarid landscapes of the western United States; yet, there is limited information regarding individual sagebrush plant water uptake. We used the stem heat balance (SHB) method to measure transpiration in mountain big sagebrush (Artemisia tridentata subsp. vaseyana) plants in a semiarid rangeland ecosystem in central Oregon, Pacific Northwest Region, USA. We evaluated the relationship between sagebrush transpiration and environmental factors from July 2022 to May 2023 for two individual plants representative of the average sagebrush stand height and crown width at the study site; transpiration rates varied by plant and by season. This study encompassed one below-average (2022; 278 mm) and one above-average (2023; 414 mm) precipitation years. Study results showed that the average water use during the entire period of study was 2.1 L d−1 for Plant 1 and 5.0 L d−1 for Plant 2. During the dry year, maximum transpiration was observed during the summer (Plant 1 = 4.8 L d−1; Plant 2 = 11.1 L d−1). For the wet year, both plants showed maximum transpiration levels at the end of the recording period in mid-May (Plant 1 = 9.6 L d−1; Plant 2 = 8.6 L d−1). The highest seasonal transpiration of both plants occurred in summer (2.87 L d−1), whereas the lowest transpiration was obtained in winter (0.21 L d−1). For all seasons but winter, soil moisture (SM), soil temperature (ST), and vapor pressure deficit (VPD) variables generally showed positive correlations with transpiration. Transpiration rates decreased in the summer of 2022 as the surface soil gradually dried. The two plants’ most significant water uptake differences were obtained during the dry year. It is possible that the larger stem diameter of plant 2 may have contributed to its higher transpiration rates during times of limited water availability. The study results add to the understanding of water use by sagebrush and its potential impact on the water balance of cool-climate rangeland ecosystems. The findings also highlight the sensitivity of sagebrush to variations in seasonal soil moisture availability, soil temperature, and vapor pressure deficit. Future research should involve studying the combined effects of water use by various dominant vegetation species and its effects on the water budget at the watershed scale. Full article
Show Figures

Figure 1

25 pages, 3289 KiB  
Article
Effects of Pre-Fire Vegetation on the Post-Fire Plant Community Response to Wildfire along a Successional Gradient in Western Juniper Woodlands
by Eva K. Strand and Stephen C. Bunting
Fire 2023, 6(4), 141; https://doi.org/10.3390/fire6040141 - 2 Apr 2023
Cited by 5 | Viewed by 2486
Abstract
Western juniper was often historically restricted to fire refugia such as rocky outcrops but has since Euro-American settlement expanded into areas previously dominated by sagebrush steppe. Wildfires in developed woodlands have been rare. In 2007, the Tongue-Crutcher Wildland Fire burned 18,890 ha in [...] Read more.
Western juniper was often historically restricted to fire refugia such as rocky outcrops but has since Euro-American settlement expanded into areas previously dominated by sagebrush steppe. Wildfires in developed woodlands have been rare. In 2007, the Tongue-Crutcher Wildland Fire burned 18,890 ha in southwestern Idaho along a woodland development gradient, providing unique research opportunities. To assess fire effects on vascular plants, field data were collected in 2012/2013 and 2019/2020. Species richness was uniform along the sere, while species diversity declined in late woodland stages attributed to juniper dominance. The greatest changes in species composition following fire occurred in later woodland development phases. Herbaceous vegetation increased following fire, but sagebrush cover was still lower in burned plots 12–13 years post-fire. Many stands dominated by juniper pre-fire became dominated by snowbrush ceanothus post-fire. Juniper seedlings were observed post-fire, indicating that juniper will reoccupy the area. Our research demonstrates resilience to fire and resistance to annual grasses particularly in early successional stages, which provides opportunities for fire use as a management tool on cool and moist ecological sites. Loss of old-growth juniper to wildfire underlines the importance of maintaining and provisioning for future development of some old growth on the landscape given century-long recovery times. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

20 pages, 10758 KiB  
Article
Fire-Environment Analysis: An Example of Army Garrison Camp Williams, Utah
by Scott M. Frost, Martin E. Alexander, R. Justin DeRose and Michael J. Jenkins
Fire 2020, 3(1), 6; https://doi.org/10.3390/fire3010006 - 9 Mar 2020
Cited by 2 | Viewed by 4003
Abstract
The planning of fuel treatments for ecological or societal purposes requires an in-depth understanding of the conditions associated with the occurrence of free-burning fire behavior for the area of concern. Detailed fire-environment analysis for Army Garrison Camp Williams (AGCW) in north-central Utah was [...] Read more.
The planning of fuel treatments for ecological or societal purposes requires an in-depth understanding of the conditions associated with the occurrence of free-burning fire behavior for the area of concern. Detailed fire-environment analysis for Army Garrison Camp Williams (AGCW) in north-central Utah was completed as a prerequisite for fuel treatment planning, using a procedure that could be generally applied. Vegetation and fuels data, topographic and terrain features, and weather and climate data, were assessed and integrated into predictive fuel models to aid planning. A fire behavior fuel model map was developed from biophysical variables, vegetation type, and plot survey data using random forests, and resulted in an overall classification rate of 72%. The predominate vegetation type-fuel complex was grass, followed by lesser amounts of Gambel oak, Wyoming big sagebrush and Utah juniper. The majority of AGCW is mountainous in nature, characterized by slopes less than 40% in steepness with slightly more northerly and easterly aspects than south and west, and elevations that ranged from 1650 to 1950 m above mean sea level. Local fire weather data compiled from the three nearest remote automated weather stations indicated that average temperature maxima (32 °C) and relative humidity minima (12%) usually occurred between 1400 to 1500 h daily, and from July to August, seasonally. The semi-arid climate at AGCW, coupled with the corresponding preponderance of flashy fuel types and sloping terrain, constitutes a formidable fire environment in which to plan for mitigating against adverse fire behavior. Full article
Show Figures

Figure 1

Back to TopTop