Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = monopolar and bipolar constant power loads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 350 KiB  
Article
A Family of Newton and Quasi-Newton Methods for Power Flow Analysis in Bipolar Direct Current Networks with Constant Power Loads
by Oscar Danilo Montoya, Juan Diego Pulgarín Rivera, Luis Fernando Grisales-Noreña, Walter Gil-González and Fabio Andrade-Rengifo
Math. Comput. Appl. 2025, 30(3), 50; https://doi.org/10.3390/mca30030050 - 6 May 2025
Viewed by 579
Abstract
This paper presents a comprehensive study on the formulation and solution of the power flow problem in bipolar direct current (DC) distribution networks with unbalanced constant power loads. Using the nodal voltage method, a unified nonlinear model is proposed which accurately captures both [...] Read more.
This paper presents a comprehensive study on the formulation and solution of the power flow problem in bipolar direct current (DC) distribution networks with unbalanced constant power loads. Using the nodal voltage method, a unified nonlinear model is proposed which accurately captures both monopolar and bipolar load configurations as well as the voltage coupling between conductors. The model assumes a solid grounding of the neutral conductor and known system parameters, ensuring reproducibility and physical consistency. Seven iterative algorithms are developed and compared, including three Newton–Raphson-based formulations and four quasi-Newton methods with constant Jacobian approximations. The proposed techniques are validated on two benchmark networks comprising 21 and 85 buses. Numerical results demonstrate that Newton-based methods exhibit quadratic convergence and high accuracy, while quasi-Newton approaches significantly reduce computational time, making them more suitable for large-scale systems. The findings highlight the trade-offs between convergence speed and computational efficiency, and they provide valuable insights for the planning and operation of modern bipolar DC grids. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

13 pages, 741 KiB  
Article
Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
by Ángeles Medina-Quesada, Oscar Danilo Montoya and Jesus C. Hernández
Sensors 2022, 22(8), 2914; https://doi.org/10.3390/s22082914 - 11 Apr 2022
Cited by 18 | Viewed by 2065
Abstract
This paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces [...] Read more.
This paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces important neutral currents and voltage imbalances along the DC grid. The power flow problem is formulated through the triangular-based representation of the grid topology, which generates a recursive formulation that allows determining the voltage values in the demand nodes through an iterative procedure. The linear convergence of the triangular-based power flow method is tested through multiple load variations with respect to the nominal grid operative condition. Numerical results in the 21- and the 85-bus grids reveal the relevant variations in the voltage profiles and total grid power losses when the neutral cable is solidly grounded or not. Full article
Show Figures

Figure 1

Back to TopTop