Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mogrol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3346 KiB  
Article
Integrative Transcriptomic and Metabolomic Analysis of Muscle and Liver Reveals Key Molecular Pathways Influencing Growth Traits in Zhedong White Geese
by Kai Shi, Xiao Zhou, Jiuli Dai, Yuefeng Gao, Linna Gao, Yangyang Shen and Shufang Chen
Animals 2025, 15(9), 1341; https://doi.org/10.3390/ani15091341 - 6 May 2025
Viewed by 635
Abstract
Geese (Anser cygnoides) are popular worldwide with consumers for their unique meat quality, egg production, foie gras, and goose down; however, the key genes that influence geese growth remain elusive. To explore the mechanism of geese growth, a total of 500 [...] Read more.
Geese (Anser cygnoides) are popular worldwide with consumers for their unique meat quality, egg production, foie gras, and goose down; however, the key genes that influence geese growth remain elusive. To explore the mechanism of geese growth, a total of 500 Zhedong White geese were raised; four high-weight (HW) and four low-weight (LW) male geese were selected to collect carcass traits and for further transcriptomic and metabolomic analysis. The body weight and average daily gain of HW geese were significantly higher than those of the LW geese (p-value < 0.05), and the yields of the liver, gizzard, glandular stomach, and pancreas showed no significant difference between the HW and the LW group (p-value > 0.05). Compared with the LW geese, 19 differentially expressed genes (DEGs) (i.e., COL11A2, COL22A1, and TF) were detected in the breast muscle from the HW geese, which were involved in the PPAR signaling pathway, adipocytokine signaling pathway, fatty acid biosynthesis, and ferroptosis. A total of 59 differential accumulation metabolites (DAMs), which influence the pathways of glutathione metabolism and vitamin B6 metabolism, were detected in the breast muscle between the HW and LW geese. In the liver, 106 DEGs (i.e., THSD4, CREB3L3, and CNST) and 202 DAMs were found in the livers of the HW and LW groups, respectively. DEGs regulated the pathways of the TGF-beta signaling pathway, pyruvate metabolism, and adipocytokine signaling pathway; DAMs were involved in pyrimidine metabolism, nitrogen metabolism, and phenylalanine metabolism. Correlation analysis between the top DEGs and DAMs revealed that in the breast muscle, the expression levels of COL11A2 and COL22A1 were positively correlated with the content of S-(2-Hydroxy-3-buten-1-yl)glutathione. In the liver, the expression of THSD4 was positively correlated with the content of 2-Hydroxyhexadecanoic acid. In addition, one DEG (LOC106049048) and four DAMs (mogrol, brassidic acid, flabelline, and L-Leucyl-L-alanine) were shared in the breast muscle and liver. These important results contribute to improving the knowledge of goose growth and exploring the effective molecular markers that could be adopted for Zhedong White goose breeding. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

19 pages, 1650 KiB  
Review
Pharmacological Activities of Mogrol: Potential Phytochemical against Different Diseases
by Varun Jaiswal and Hae-Jeung Lee
Life 2023, 13(2), 555; https://doi.org/10.3390/life13020555 - 16 Feb 2023
Cited by 7 | Viewed by 3494
Abstract
Recently, mogrol has emerged as an important therapeutic candidate with multiple potential pharmacological properties, including neuroprotective, anticancer, anti-inflammatory, antiobesity, antidiabetes, and exerting a protective effect on different organs such as the lungs, bone, brain, and colon. Pharmacokinetic studies also highlighted the potential of [...] Read more.
Recently, mogrol has emerged as an important therapeutic candidate with multiple potential pharmacological properties, including neuroprotective, anticancer, anti-inflammatory, antiobesity, antidiabetes, and exerting a protective effect on different organs such as the lungs, bone, brain, and colon. Pharmacokinetic studies also highlighted the potential of mogrol as a therapeutic. Studies were also conducted to design and synthesize the analogs of mogrol to achieve better activities against different diseases. The literature also highlighted the possible molecular mechanism behind pharmacological activities, which suggested the role of several important targets, including AMPK, TNF-α, and NF-κB. These important mogrol targets were verified in different studies, indicating the possible role of mogrol in other associated diseases. Still, the compilation of pharmacological properties, possible molecular mechanisms, and important targets of the mogrol is missing in the literature. The current study not only provides the compilation of information regarding pharmacological activities but also highlights the current gaps and suggests the precise direction for the development of mogrol as a therapeutic against different diseases. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products and Their Biomedical Properties)
Show Figures

Figure 1

14 pages, 4341 KiB  
Review
Culturing Important Plants for Sweet Secondary Products under Consideration of Environmentally Friendly Aspects
by Matthias Preusche, Andreas Ulbrich and Margot Schulz
Processes 2022, 10(4), 703; https://doi.org/10.3390/pr10040703 - 5 Apr 2022
Cited by 4 | Viewed by 4246
Abstract
Some sweet tasting plant secondary metabolites are non-caloric or low nutritive compounds that have traditional use in food formulations. This mini-review focuses on conventional and advanced cultivation regimes of plants that accumulate sweet tasting or sweet taste modulating secondary metabolites of potential economic [...] Read more.
Some sweet tasting plant secondary metabolites are non-caloric or low nutritive compounds that have traditional use in food formulations. This mini-review focuses on conventional and advanced cultivation regimes of plants that accumulate sweet tasting or sweet taste modulating secondary metabolites of potential economic importance, in particular mogrosides (Siraitia grosvenorii), phyllodulcin (Hydrangea macrophylla), glycyrrhizin (Glycyrrhiza glabra), steviol glycosides (Stevia grosvenorii), and rubusoside (Rubus suavissimus). Consequential obstacles during the cultivation of Hydrangea macrophylla cultivars outside their natural habitat in a protected cultivation environment are addressed. Culturing at non-habitat locations facilitates short transportation routes of plant material for processing, which can be a key to an economically and environmentally compatible usage. The biosynthetic pathways, as far as known, are shortly mentioned. The proved or hypothetical degradation pathways of the compounds to minimalize environmental contamination are another focal point. Full article
Show Figures

Figure 1

Back to TopTop