Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = modified polycarboxylate by pyrrolidone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6566 KiB  
Article
Preparation of Modified Polycarboxylate by Pyrrolidone for Using as a Dispersant in Cobalt Blue Nano-Pigment Slurry
by Qianqian Tang, Rong Yang, Jinnuo Li, Mingsong Zhou and Dongjie Yang
Molecules 2024, 29(16), 3940; https://doi.org/10.3390/molecules29163940 - 21 Aug 2024
Cited by 2 | Viewed by 1142
Abstract
In this paper, N-vinylpyrrolidone was copolymerized with acrylic acid and itaconic acid by free radical polymerization, and a series of polyacrylic acid-co-itaconic acid-co-N-vinylpyrrolidone (PAIN) dispersants with different pyrrolidone ligand contents were synthesized and characterized. Then, the cobalt blue nano-pigment slurry (20 wt%) was [...] Read more.
In this paper, N-vinylpyrrolidone was copolymerized with acrylic acid and itaconic acid by free radical polymerization, and a series of polyacrylic acid-co-itaconic acid-co-N-vinylpyrrolidone (PAIN) dispersants with different pyrrolidone ligand contents were synthesized and characterized. Then, the cobalt blue nano-pigment slurry (20 wt%) was prepared through a water-based grinding method, and the optimum grinding technology was explored and determined as follows: PAIN2 as a dispersant, a dispersant dosage of 10 wt%, and a grinding time of 480 min. According to this optimum grinding technology, the prepared pigment slurry had a significantly decreased agglomeration, the D90 of which was 82 nm, and separately increased to 130 nm and 150 nm after heat storage for 3 and 7 days, exhibiting excellent heat storage stability. Additionally, its TSI value was also the lowest (1.9%), indicating good dispersion stability. The QCM and adorption capacity measuring results showed PAIN2 had a larger adsorption capacity, and the formed adsorption layer had a higher rigidity and was not easy to fall off. This was caused by both the interaction of carboxyl groups and the pyrrolidone ligand (strong coordination interaction) in PAIN2 with cobalt blue. The XPS and FT–IR measurements further proved the above-mentioned adsorption mechanism. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop