Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mocromanipulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 10954 KB  
Article
Learning Micromanipulation, Part 2: Term Projects in Practice
by Giovanni Bonciani, Gaetano Biancucci, Simona Fioravanti, Vagif Valiyev and Antonello Binni
Actuators 2018, 7(3), 56; https://doi.org/10.3390/act7030056 - 3 Sep 2018
Cited by 4 | Viewed by 5944
Abstract
This paper describes the activities that have been necessary to design, fabricate, control and test some low-cost test stands independently developed by the students enrolled in the course of Micro-Nano sensors and actuators for the postgraduate course in Industrial Nanotechnologies Engineering of the [...] Read more.
This paper describes the activities that have been necessary to design, fabricate, control and test some low-cost test stands independently developed by the students enrolled in the course of Micro-Nano sensors and actuators for the postgraduate course in Industrial Nanotechnologies Engineering of the University of Rome La Sapienza. The construction and use of these test stands are an essential part of teaching and learning methods whose theoretical bases have been presented in the companion paper (Part 1). Each test stand is composed of a compliant structure and a control system, which consists of a programmable control micro-card equipped with sensors and actuators. The compliant structure consists of a compliant mechanism whose geometry is achieved by scaling some previously developed silicon micromanipuators and microactuators up to the macroscale by a factor of 20. This macroscale model offered a kinesthetic tool to improve the understanding of the original microsystems and their working principles. The original silicon micromechanisms have been previously presented in the literature by the research group after design and deep reactive-ion etching (DRIE) microfabrication. Scaling from micro to macro size was quite easy because the original DRIE masks were bestowed to the students in the form of CAD files. The samples at the macroscale have been fabricated by means of recently available low-cost 3D printers after some necessary modifications of the mask geometry. The purpose of the whole work (Parts 1 and 2) was the improvement of the efficiency of an educational process in the field of microsystem science. By combining the two companion papers, concerning, respectively, the theoretical basis of the teaching methods and the students’ achievements, it is possible to conclude that, in a given class, there may be some preferred activities that are more efficient than others in terms of advancements and satisfaction. Full article
(This article belongs to the Special Issue Micromanipulation)
Show Figures

Figure 1

9 pages, 599 KB  
Article
Learning Micromanipulation, Part 1: An Approach Based on Multidimensional Ability Inventories and Text Mining
by Gaetano Biancucci, Giovanni Bonciani, Simona Fioravanti, Antonello Binni, Franco Lucchese and Apollonia Matrisciano
Actuators 2018, 7(3), 55; https://doi.org/10.3390/act7030055 - 3 Sep 2018
Cited by 4 | Viewed by 5226
Abstract
In the last decades, an effort has been made to improve the efficiency of high-level and academic education players. Nowadays, students’ preferences and habits are continuously evolving and so the educational institutions deal with important challenges, such as not losing attractiveness or preventing [...] Read more.
In the last decades, an effort has been made to improve the efficiency of high-level and academic education players. Nowadays, students’ preferences and habits are continuously evolving and so the educational institutions deal with important challenges, such as not losing attractiveness or preventing early abandonment during the programs. In many countries, some important universities are public, and so they receive national grants that are based on a variety of factors, on which the teaching efficiency has a great impact. This contribution presents a method to improve students commitment during traditional lessons and laboratory tests. The idea consists in planning some activities according to the students’ learning preferences, which were studied by means of two different approaches. The first one was based on Gardner’s multiple intelligence inventory, which is useful to highlight some peculiar characteristics of the students on the specific educational field. In the second method, direct interviews, voice recognition, and text mining were used to extract some interesting characteristics of the group of students who participated in the projects. The methods were applied in May 2018 to the students attending the course of Micro-Nano Sensors and Actuators for the postgraduate academic program dedicated to Industrial Nanotechnologies Engineering of the University of Rome La Sapienza. The present paper represents the first part of the investigation and it is dedicated essentially to the adopted methods. The second part of the work is presented in the companion paper dedicated to the presentation of the practical project that the students completed before the exam. Full article
(This article belongs to the Special Issue Micromanipulation)
Show Figures

Figure 1

Back to TopTop