Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = mobile ad hoc network (MANETs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5079 KiB  
Article
Enhancing QoS in Opportunistic Networks Through Direct Communication for Dynamic Routing Challenges
by Ambreen Memon, Aqsa Iftikhar, Muhammad Nadeem Ali and Byung-Seo Kim
Telecom 2025, 6(3), 55; https://doi.org/10.3390/telecom6030055 - 1 Aug 2025
Viewed by 145
Abstract
Opportunistic Networks (OppNets) lack the capability to maintain consistent end-to-end paths between source and destination nodes, unlike Mobile Ad Hoc Networks (MANETs). This absence of stable routing presents substantial challenges for data transmission in OppNets. Due to node mobility, routing paths are inherently [...] Read more.
Opportunistic Networks (OppNets) lack the capability to maintain consistent end-to-end paths between source and destination nodes, unlike Mobile Ad Hoc Networks (MANETs). This absence of stable routing presents substantial challenges for data transmission in OppNets. Due to node mobility, routing paths are inherently dynamic, requiring the selection of neighboring nodes as intermediate hops to forward data toward the destination. However, frequent node movement can cause considerable delays for senders attempting to identify appropriate next hops, consequently degrading the quality of service (QoS) in OppNets. To mitigate this challenge, this paper proposes an alternative approach for scenarios where senders cannot locate suitable next hops. Specifically, we propose utilizing direct communication via line of sight (LoS) between sender and receiver nodes to satisfy QoS requirements. The proposed scheme is experimented with using the ONE simulator, which is widely used for OppNet experiments and study, and compared against existing schemes such as the history-based routing protocol (HBRP) and AEProphet routing protocol. Full article
Show Figures

Figure 1

21 pages, 354 KiB  
Article
Adaptive Broadcast Scheme with Fuzzy Logic and Reinforcement Learning Dynamic Membership Functions in Mobile Ad Hoc Networks
by Akobir Ismatov, BeomKyu Suh, Jian Kim, YongBeom Park and Ki-Il Kim
Mathematics 2025, 13(15), 2367; https://doi.org/10.3390/math13152367 - 23 Jul 2025
Viewed by 238
Abstract
Broadcasting in Mobile Ad Hoc Networks (MANETs) is significantly challenged by dynamic network topologies. Traditional fuzzy logic-based schemes that often rely on static fuzzy tables and fixed membership functions are limiting their ability to adapt to evolving network conditions. To address these limitations, [...] Read more.
Broadcasting in Mobile Ad Hoc Networks (MANETs) is significantly challenged by dynamic network topologies. Traditional fuzzy logic-based schemes that often rely on static fuzzy tables and fixed membership functions are limiting their ability to adapt to evolving network conditions. To address these limitations, in this paper, we conduct a comparative study of two innovative broadcasting schemes that enhance adaptability through dynamic fuzzy logic membership functions for the broadcasting problem. The first approach (Model A) dynamically adjusts membership functions based on changing network parameters and fine-tunes the broadcast (BC) versus do-not-broadcast (DNB) ratio. Model B, on the other hand, introduces a multi-profile switching mechanism that selects among distinct fuzzy parameter sets optimized for various macro-level scenarios, such as energy constraints or node density, without altering the broadcasting ratio. Reinforcement learning (RL) is employed in both models: in Model A for BC/DNB ratio optimization, and in Model B for action decisions within selected profiles. Unlike prior fuzzy logic or reinforcement learning approaches that rely on fixed profiles or static parameter sets, our work introduces adaptability at both the membership function and profile selection levels, significantly improving broadcasting efficiency and flexibility across diverse MANET conditions. Comprehensive simulations demonstrate that both proposed schemes significantly reduce redundant broadcasts and collisions, leading to lower network overhead and improved message delivery reliability compared to traditional static methods. Specifically, our models achieve consistent packet delivery ratios (PDRs), reduce end-to-end Delay by approximately 23–27%, and lower Redundancy and Overhead by 40–60% and 40–50%, respectively, in high-density and high-mobility scenarios. Furthermore, this comparative analysis highlights the strengths and trade-offs between reinforcement learning-driven broadcasting ratio optimization (Model A) and parameter-based dynamic membership function adaptation (Model B), providing valuable insights for optimizing broadcasting strategies. Full article
Show Figures

Figure 1

24 pages, 2001 KiB  
Article
Reliable Low-Latency Multicasting in MANET: A DTN7-Driven Pub/Sub Framework Optimizing Delivery Rate and Throughput
by Xinwei Liu and Satoshi Fujita
Information 2025, 16(6), 508; https://doi.org/10.3390/info16060508 - 18 Jun 2025
Viewed by 441
Abstract
This paper addresses the challenges of multicasting in Mobile Ad Hoc Networks (MANETs), where communication relies exclusively on direct interactions between mobile nodes without the support of fixed infrastructure. In such networks, efficient information dissemination is critical, particularly in scenarios where an event [...] Read more.
This paper addresses the challenges of multicasting in Mobile Ad Hoc Networks (MANETs), where communication relies exclusively on direct interactions between mobile nodes without the support of fixed infrastructure. In such networks, efficient information dissemination is critical, particularly in scenarios where an event detected by one node must be reliably communicated to a designated subset of nodes. The highly dynamic nature of MANET, characterized by frequent topology changes and unpredictable connectivity, poses significant challenges to stable and efficient multicasting. To address these issues, we adopt a Publish/Subscribe (Pub/Sub) model that utilizes brokers as intermediaries for information dissemination. However, ensuring the robustness of broker-based multicasting in a highly mobile environment requires novel strategies to mitigate the effects of frequent disconnections and mobility-induced disruptions. To this end, we propose a framework based on three key principles: (1) leveraging the Disruption-Tolerant Networking Implementations of the Bundle Protocol 7 (DTN7) at the network layer to sustain message delivery even in the presence of intermittent connectivity and high node mobility; (2) dynamically generating broker replicas to ensure that broker functionality persists despite sudden node failures or disconnections; and (3) enabling brokers and their replicas to periodically broadcast advertisement packets to maintain communication paths and facilitate efficient data forwarding, drawing inspiration from Named Data Networking (NDN) techniques. To evaluate the effectiveness of our approach, we conduct extensive simulations using ns-3, examining its impact on message delivery reliability, latency, and overall network throughput. The results demonstrate that our method significantly reduces message delivery delays while improving delivery rates, particularly in high-mobility scenarios. Additionally, the integration of DTN7 at the bundle layer proves effective in mitigating performance degradation in environments where nodes frequently change their positions. Our findings highlight the potential of our approach in enhancing the resilience and efficiency of broker-assisted multicasting in MANET, making it a promising solution for real-world applications such as disaster response, military operations, and decentralized IoT networks. Full article
(This article belongs to the Special Issue Wireless IoT Network Protocols, 3rd Edition)
Show Figures

Graphical abstract

28 pages, 4445 KiB  
Article
Link Availability-Aware Routing Metric Design for Maritime Mobile Ad Hoc Network
by Shuaiheng Huai, Tianrui Liu, Yi Jiang, Yanpeng Dai, Feng Xue and Qing Hu
J. Mar. Sci. Eng. 2025, 13(6), 1184; https://doi.org/10.3390/jmse13061184 - 17 Jun 2025
Cited by 1 | Viewed by 682
Abstract
A maritime mobile ad hoc network (M-MANET) is an essential part of the maritime communication network and plays a key role in many maritime scenarios. However, the topology of M-MANET dynamically changes with the movement of vessels, which leads to unstable link states [...] Read more.
A maritime mobile ad hoc network (M-MANET) is an essential part of the maritime communication network and plays a key role in many maritime scenarios. However, the topology of M-MANET dynamically changes with the movement of vessels, which leads to unstable link states and poses the risk of data transmission interruption. In this paper, a mobility model for small unmanned surface vessels based on smooth Gaussian semi-Markovian and a trajectory prediction method for large vessels based on a bi-directional long short-term memory network are proposed to better simulate the nodes’ movement in the M-MANET. Then, a link available based routing metric is proposed for M-MANET scenarios, which incorporates factors of mobility model and vessel trajectory. Experiments demonstrate that compared with the benchmark methods, the proposed mobility model depicts the movement characteristics of vessels more accurately, the proposed trajectory prediction method achieves higher prediction accuracy and stability, the proposed routing metric scheme has a reduction of 14.59% in end-to-end delay, a 1.54% increase in packet delivery fraction, and a 4.43% increase in network throughput on average. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

29 pages, 6184 KiB  
Article
MANET Routing Protocols’ Performance Assessment Under Dynamic Network Conditions
by Ibrahim Mohsen Selim, Naglaa Sayed Abdelrehem, Walaa M. Alayed, Hesham M. Elbadawy and Rowayda A. Sadek
Appl. Sci. 2025, 15(6), 2891; https://doi.org/10.3390/app15062891 - 7 Mar 2025
Viewed by 2669
Abstract
Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks characterized by dynamic topologies and the absence of fixed infrastructure. These unique features make MANETs critical for applications such as disaster recovery, military operations, and IoT systems. However, they also pose significant challenges for [...] Read more.
Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks characterized by dynamic topologies and the absence of fixed infrastructure. These unique features make MANETs critical for applications such as disaster recovery, military operations, and IoT systems. However, they also pose significant challenges for efficient and effective routing. This study evaluates the performance of eight MANET routing protocols: Optimized Link State Routing (OLSR), Destination-Sequenced Distance Vector (DSDV), Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), Ad Hoc On-Demand Multipath Distance Vector (AOMDV), Temporally Ordered Routing Algorithm (TORA), Zone Routing Protocol (ZRP), and Geographic Routing Protocol (GRP). Using a custom simulation environment in OMNeT++ 6.0.1 with INET-4.5.0, the protocols were tested under four scenarios with varying node densities (20, 80, 200, and 500 nodes). The simulations utilized the Random Waypoint Mobility model to mimic dynamic node movement and evaluated key performance metrics, including network load, throughput, delay, energy consumption, jitter, packet loss rate, and packet delivery ratio. The results reveal that proactive protocols like OLSR are ideal for stable, low-density environments, while reactive protocols such as AOMDV and TORA excel in dynamic, high-mobility scenarios. Hybrid protocols, particularly GRP, demonstrate a balanced approach; achieving superior overall performance with up to 30% lower energy consumption and higher packet delivery ratios compared to reactive protocols. These findings provide practical insights into the optimal selection and deployment of MANET routing protocols for diverse applications, emphasizing the potential of hybrid protocols for modern networks like IoT and emergency response systems. Full article
(This article belongs to the Special Issue Applications of Wireless and Mobile Communications)
Show Figures

Figure 1

26 pages, 18654 KiB  
Article
A Study of MANET Routing Protocols in Heterogeneous Networks: A Review and Performance Comparison
by Nurul I. Sarkar and Md Jahan Ali
Electronics 2025, 14(5), 872; https://doi.org/10.3390/electronics14050872 - 23 Feb 2025
Viewed by 1781
Abstract
Mobile ad hoc networks (MANETs) are becoming a popular networking technology as they can easily be set up and provide communication support on the go. These networks can be used in application areas, such as battlefields and disaster relief operations, where infrastructure networks [...] Read more.
Mobile ad hoc networks (MANETs) are becoming a popular networking technology as they can easily be set up and provide communication support on the go. These networks can be used in application areas, such as battlefields and disaster relief operations, where infrastructure networks are not available. Like media access control protocols, MANET routing protocols can also play an important role in determining network capacity and system performance. Research on the impact of heterogeneous nodes in terms of MANET performance is required for proper deployment of such systems. While MANET routing protocols have been studied and reported extensively in the networking literature, the performance of heterogeneous nodes/devices in terms of system performance has not been fully explored yet. The main objective of this paper is to review and compare the performance of four selected MANET routing protocols (AODV, OLSR, BATMAN and DYMO) in a heterogeneous MANET setting. We consider three different types of nodes in the MANET routing performance study, namely PDAs (fixed nodes with no mobility), laptops (low-mobility nodes) and mobile phones (high-mobility nodes). We measure the QoS metrics, such as the end-to-end delays, throughput, and packet delivery ratios, using the OMNeT++-network simulator. The findings reported in this paper provide some insights into MANET routing performance issues and challenges that can help network researchers and engineers to contribute further toward developing next-generation wireless networks capable of operating under heterogeneous networking constraints. Full article
(This article belongs to the Special Issue Multimedia in Radio Communication and Teleinformatics)
Show Figures

Figure 1

25 pages, 2389 KiB  
Review
A Critical Analysis of Cooperative Caching in Ad Hoc Wireless Communication Technologies: Current Challenges and Future Directions
by Muhammad Ali Naeem, Rehmat Ullah, Sushank Chudhary and Yahui Meng
Sensors 2025, 25(4), 1258; https://doi.org/10.3390/s25041258 - 19 Feb 2025
Cited by 1 | Viewed by 972
Abstract
The exponential growth of wireless traffic has imposed new technical challenges on the Internet and defined new approaches to dealing with its intensive use. Caching, especially cooperative caching, has become a revolutionary paradigm shift to advance environments based on wireless technologies to enable [...] Read more.
The exponential growth of wireless traffic has imposed new technical challenges on the Internet and defined new approaches to dealing with its intensive use. Caching, especially cooperative caching, has become a revolutionary paradigm shift to advance environments based on wireless technologies to enable efficient data distribution and support the mobility, scalability, and manageability of wireless networks. Mobile ad hoc networks (MANETs), wireless mesh networks (WMNs), Wireless Sensor Networks (WSNs), and Vehicular ad hoc Networks (VANETs) have adopted caching practices to overcome these hurdles progressively. In this paper, we discuss the problems and issues in the current wireless ad hoc paradigms as well as spotlight versatile cooperative caching as the potential solution to the increasing complications in ad hoc networks. We classify and discuss multiple cooperative caching schemes in distinct wireless communication contexts and highlight the advantages of applicability. Moreover, we identify research directions to further study and enhance caching mechanisms concerning new challenges in wireless networks. This extensive review offers useful findings on the design of sound caching strategies in the pursuit of enhancing next-generation wireless networks. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 3207 KiB  
Article
Computer-Aided Efficient Routing and Reliable Protocol Optimization for Autonomous Vehicle Communication Networks
by Alaa Kamal Yousif Dafhalla, Mohamed Elshaikh Elobaid, Amira Elsir Tayfour Ahmed, Ameni Filali, Nada Mohamed Osman SidAhmed, Tahani A. Attia, Badria Abaker Ibrahim Mohajir, Jawaher Suliman Altamimi and Tijjani Adam
Computers 2025, 14(1), 13; https://doi.org/10.3390/computers14010013 - 3 Jan 2025
Cited by 3 | Viewed by 1378
Abstract
The rise of autonomous vehicles necessitates advanced communication networks for effective data exchange. The routing protocols Ad hoc On-Demand Distance Vector (AODV) and Greedy Perimeter Stateless Routing (GPSR) are vital in mobile networks (MANETs) and vehicular ad hoc networks (VANETs). However, their performance [...] Read more.
The rise of autonomous vehicles necessitates advanced communication networks for effective data exchange. The routing protocols Ad hoc On-Demand Distance Vector (AODV) and Greedy Perimeter Stateless Routing (GPSR) are vital in mobile networks (MANETs) and vehicular ad hoc networks (VANETs). However, their performance is affected by changing network conditions. This study examines key routing parameters—MaxJitter, Hello/Beacon Interval, and route validity time—and their impact on AODV and GPSR performance in urban and highway scenarios. The simulation results reveal that increasing MaxJitter enhances AODV throughput by 12% in cities but decreases it by 8% on highways, while GPSR throughput declines by 15% in cities and 10% on highways. Longer Hello intervals improve AODV performance by 10% in urban settings but reduce it by 6% on highways. Extending route validity time increases GPSR’s Packet Delivery Ratio (PDR) by 10% in cities, underscoring the need to optimize routing parameters for enhanced VANET performance. Full article
Show Figures

Figure 1

14 pages, 480 KiB  
Article
Routing Enhancement in MANET Using Particle Swarm Algorithm
by Ohood Almutairi, Enas Khairullah, Abeer Almakky and Reem Alotaibi
Automation 2024, 5(4), 630-643; https://doi.org/10.3390/automation5040036 - 22 Dec 2024
Cited by 1 | Viewed by 1294
Abstract
A Mobile ad hoc Network (MANET) is a collection of wireless mobile nodes that temporarily establish a network without centralized administration or fixed infrastructure. Designing the routing of adequate routing protocols is a major challenge given the constraints of battery, bandwidth, multi-hop, mobility, [...] Read more.
A Mobile ad hoc Network (MANET) is a collection of wireless mobile nodes that temporarily establish a network without centralized administration or fixed infrastructure. Designing the routing of adequate routing protocols is a major challenge given the constraints of battery, bandwidth, multi-hop, mobility, and enormous network sizes. Recently, Swarm Intelligence (SI) methods have been employed in MANET routing due to similarities between swarm behavior and routing. These methods are applied to obtain ideal solutions that ensure flexibility. This paper implements an enhanced Particle Swarm Optimization (EPSO) algorithm that improves MANET performance by enhancing the routing protocol. The proposed algorithm selects the stable path by considering multiple metrics such as short distance, delay of the path, and energy consumption. The simulation results illustrate that the EPSO outperforms other existing approaches regarding throughput, PDR, and number of valid paths. Full article
Show Figures

Figure 1

17 pages, 403 KiB  
Article
Enhancing Stability and Efficiency in Mobile Ad Hoc Networks (MANETs): A Multicriteria Algorithm for Optimal Multipoint Relay Selection
by Ayoub Abdellaoui, Yassine Himeur, Omar Alnaseri, Shadi Atalla, Wathiq Mansoor, Jamal Elmhamdi and Hussain Al-Ahmad
Information 2024, 15(12), 753; https://doi.org/10.3390/info15120753 - 26 Nov 2024
Viewed by 1269
Abstract
Mobile ad hoc networks (MANETs) are autonomous systems composed of multiple mobile nodes that communicate wirelessly without relying on any pre-established infrastructure. These networks operate in highly dynamic environments, which can compromise their ability to guarantee consistent link lifetimes, security, reliability, and overall [...] Read more.
Mobile ad hoc networks (MANETs) are autonomous systems composed of multiple mobile nodes that communicate wirelessly without relying on any pre-established infrastructure. These networks operate in highly dynamic environments, which can compromise their ability to guarantee consistent link lifetimes, security, reliability, and overall stability. Factors such as mobility, energy availability, and security critically influence network performance. Consequently, the selection of paths and relay nodes that ensure stability, security, and extended network lifetimes is fundamental in designing routing protocols for MANETs. This selection is pivotal in maintaining robust network operations and optimizing communication efficiency. This paper introduces a sophisticated algorithm for selecting multipoint relays (MPRs) in MANETs, addressing the challenges posed by node mobility, energy constraints, and security vulnerabilities. By employing a multicriteria-weighted technique that assesses the mobility, energy levels, and trustworthiness of mobile nodes, the proposed approach enhances network stability, reachability, and longevity. The enhanced algorithm is integrated into the Optimized Link State Routing Protocol (OLSR) and validated through NS3 simulations, using the Random Waypoint and ManhattanGrid mobility models. The results indicate superior performance of the enhanced algorithm over traditional OLSR, particularly in terms of packet delivery, delay reduction, and throughput in dynamic network conditions. This study not only advances the design of routing protocols for MANETs but also significantly contributes to the development of robust communication frameworks within the realm of smart mobile communications. Full article
Show Figures

Graphical abstract

21 pages, 526 KiB  
Article
Collaborative Caching for Implementing a Location-Privacy Aware LBS on a MANET
by Rudyard Fuster, Patricio Galdames and Claudio Gutierréz-Soto
Appl. Sci. 2024, 14(22), 10480; https://doi.org/10.3390/app142210480 - 14 Nov 2024
Viewed by 983
Abstract
This paper addresses the challenge of preserving user privacy in location-based services (LBSs) by proposing a novel, complementary approach to existing privacy-preserving techniques such as k-anonymity and l-diversity. Our approach implements collaborative caching strategies within a mobile ad hoc network (MANET), exploiting [...] Read more.
This paper addresses the challenge of preserving user privacy in location-based services (LBSs) by proposing a novel, complementary approach to existing privacy-preserving techniques such as k-anonymity and l-diversity. Our approach implements collaborative caching strategies within a mobile ad hoc network (MANET), exploiting the geographic of location-based queries (LBQs) to reduce data exposure to untrusted LBS servers. Unlike existing approaches that rely on centralized servers or stationary infrastructure, our solution facilitates direct data exchange between users’ devices, providing an additional layer of privacy protection. We introduce a new privacy entropy-based metric called accumulated privacy loss (APL) to quantify the privacy loss incurred when accessing either the LBS or our proposed system. Our approach implements a two-tier caching strategy: local caching maintained by each user and neighbor caching based on proximity. This strategy not only reduces the number of queries to the LBS server but also significantly enhances user privacy by minimizing the exposure of location data to centralized entities. Empirical results demonstrate that while our collaborative caching system incurs some communication costs, it significantly mitigates redundant data among user caches and reduces the need to access potentially privacy-compromising LBS servers. Our findings show a 40% reduction in LBS queries, a 64% decrease in data redundancy within cells, and a 31% reduction in accumulated privacy loss compared to baseline methods. In addition, we analyze the impact of data obsolescence on cache performance and privacy loss, proposing mechanisms for maintaining the relevance and accuracy of cached data. This work contributes to the field of privacy-preserving LBSs by providing a decentralized, user-centric approach that improves both cache redundancy and privacy protection, particularly in scenarios where central infrastructure is unreachable or untrusted. Full article
(This article belongs to the Special Issue New Advances in Computer Security and Cybersecurity)
Show Figures

Figure 1

33 pages, 629 KiB  
Article
Enhancing Smart City Connectivity: A Multi-Metric CNN-LSTM Beamforming Based Approach to Optimize Dynamic Source Routing in 6G Networks for MANETs and VANETs
by Vincenzo Inzillo, David Garompolo and Carlo Giglio
Smart Cities 2024, 7(5), 3022-3054; https://doi.org/10.3390/smartcities7050118 - 17 Oct 2024
Cited by 6 | Viewed by 2305
Abstract
The advent of Sixth Generation (6G) wireless technologies introduces challenges and opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-Metric Scoring Dynamic Source Routing (MMS-DSR), a novel [...] Read more.
The advent of Sixth Generation (6G) wireless technologies introduces challenges and opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-Metric Scoring Dynamic Source Routing (MMS-DSR), a novel enhancement of the Dynamic Source Routing (DSR) protocol, designed to meet the demands of 6G-enabled MANETs and the dynamic environments of VANETs. MMS-DSR integrates advanced technologies and methodologies to enhance routing performance in dynamic scenarios. Key among these is the use of a CNN-LSTM-based beamforming algorithm, which optimizes beamforming vectors dynamically, exploiting spatial-temporal variations characteristic of 6G channels. This enables MMS-DSR to adapt beam directions in real time based on evolving network conditions, improving link reliability and throughput. Furthermore, MMS-DSR incorporates a multi-metric scoring mechanism that evaluates routes based on multiple QoS parameters, including latency, bandwidth, and reliability, enhanced by the capabilities of Massive MIMO and the IEEE 802.11ax standard. This ensures route selection is context-aware and adaptive to changing dynamics, making it effective in urban settings where vehicular and mobile nodes coexist. Additionally, the protocol uses machine learning techniques to predict future route performance, enabling proactive adjustments in routing decisions. The integration of dynamic beamforming and machine learning allows MMS-DSR to effectively handle the high mobility and variability of 6G networks, offering a robust solution for future wireless communications, particularly in smart cities. Full article
Show Figures

Figure 1

13 pages, 433 KiB  
Article
Developing a Hybrid Detection Approach to Mitigating Black Hole and Gray Hole Attacks in Mobile Ad Hoc Networks
by Mohammad Yazdanypoor, Stefano Cirillo and Giandomenico Solimando
Appl. Sci. 2024, 14(17), 7982; https://doi.org/10.3390/app14177982 - 6 Sep 2024
Cited by 5 | Viewed by 1531
Abstract
Mobile ad hoc networks (MANETs) have revolutionized wireless communications by enabling dynamic, infrastructure-free connectivity across various applications, from disaster recovery to military operations. However, these networks are highly vulnerable to security threats, particularly black hole and gray hole attacks, which can severely disrupt [...] Read more.
Mobile ad hoc networks (MANETs) have revolutionized wireless communications by enabling dynamic, infrastructure-free connectivity across various applications, from disaster recovery to military operations. However, these networks are highly vulnerable to security threats, particularly black hole and gray hole attacks, which can severely disrupt network performance and reliability. This study addresses the critical challenge of detecting and mitigating these attacks within the framework of the dynamic source routing (DSR) protocol. To tackle this issue, we propose a robust hybrid detection method that significantly enhances the identification and mitigation of black hole and gray hole attacks. Our approach integrates anomaly detection, advanced data mining techniques, and cryptographic verification to establish a multi-layered defense mechanism. Extensive simulations demonstrate that the proposed hybrid method achieves superior detection accuracy, reduces false positives, and maintains high packet delivery ratios even under attack conditions. Compared to existing solutions, this method provides more reliable and resilient network performance, dynamically adapting to evolving threats. This research represents a significant advancement in MANET security, offering a scalable and effective solution for safeguarding critical MANET applications against sophisticated cyber-attacks. Full article
(This article belongs to the Special Issue Data Security in IoT Networks)
Show Figures

Figure 1

18 pages, 475 KiB  
Article
Impact Analysis of Security Attacks on Mobile Ad Hoc Networks (MANETs)
by Iain Baird, Isam Wadhaj, Baraq Ghaleb and Craig Thomson
Electronics 2024, 13(16), 3314; https://doi.org/10.3390/electronics13163314 - 21 Aug 2024
Cited by 3 | Viewed by 2731
Abstract
Mobile ad hoc networks (MANETs) offer a decentralized communication solution ideal for infrastructure-less environments like disaster relief zones. However, their inherent lack of central control and dynamic topology make them vulnerable to attacks. This paper examines the impact of various attacks on mobile [...] Read more.
Mobile ad hoc networks (MANETs) offer a decentralized communication solution ideal for infrastructure-less environments like disaster relief zones. However, their inherent lack of central control and dynamic topology make them vulnerable to attacks. This paper examines the impact of various attacks on mobile nodes within two network types: randomly and uniformly distributed stationary networks. Four types of attacks are investigated: delay, dropping, sinkhole (alone), and a combined black hole attack (dropping + sinkhole). The effects of these attacks are compared using the packet delivery ratio, throughput, and end-to-end delay. The evaluation results show that all single attacks negatively impacted network performance, with the random network experiencing the most significant degradation. Interestingly, the combined black hole attack, while more disruptive than any single attack, affected the uniformly distributed network more severely than the random network. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

31 pages, 13226 KiB  
Article
Extended Comparison and Performance Analysis for Mobile Ad-Hoc Networks Routing Protocols Based on Different Traffic Load Patterns and Performance Metrics
by Qutaiba Razouqi, Ahmed Boushehri, Mohamed Gaballa, Lina Alsaleh and Maysam Abbod
Electronics 2024, 13(14), 2877; https://doi.org/10.3390/electronics13142877 - 22 Jul 2024
Cited by 2 | Viewed by 2755
Abstract
A mobile ad-hoc network (MANET) is a network of mobile nodes that dynamically form a transitory network lacking any existence of infrastructure and any form of centralized management. Nodes in ad hoc networks are powered by batteries with a limited lifespan and communicate [...] Read more.
A mobile ad-hoc network (MANET) is a network of mobile nodes that dynamically form a transitory network lacking any existence of infrastructure and any form of centralized management. Nodes in ad hoc networks are powered by batteries with a limited lifespan and communicate in a restricted bandwidth. The unpredictable environment of a MANET may run into a major concern in the routing mechanism, therefore the need for a routing protocol with robust performance is still one of the key challenges in MANET deployment. In this work, a comparative comparison and extensive simulation analysis have been carried out for three major routing protocols: destination sequenced distance vector (DSDV), dynamic source routing (DSR) and ad hoc on-demand distance vector (AODV). Protocol evaluation has been extended by considering several simulation arrangements, different classes of traffic load patterns and diverse performance metrics. Based on packet rate change, node quantity and node speed, simulation scenarios were generated. Protocols were investigated against energy consumption, throughput, lost packets, routing load and packet delivery fraction for three types of traffic load patterns regular, irregular and joint traffic. DSR and AODV protocols proved to be more reliable when joint traffic was implemented when node speed and packets variations are considered. DSDV protocol verifies outstanding response over other protocols in terms of energy consumption when either regular or irregular traffic is applied. The simulation results for DSR protocol have verified the superiority over other protocols in 9 simulation scenarios when diverse metrics are considered. DSDV showed optimal performance in 7 cases, especially at low packet rates and in networks with minimum number of nodes. Similarly, AODV protocol showed outstanding performance in 6 scenarios, when higher packet rates and node mobility are considered. Full article
(This article belongs to the Special Issue New Insight into Network Virtualization and Management)
Show Figures

Figure 1

Back to TopTop