Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mitochondrial replacement therapy (MRT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1844 KiB  
Review
Causes of and Solutions to Mitochondrial Disorders: A Literature Review
by Vera Belousova, Irina Ignatko, Irina Bogomazova, Elena Sosnova, Svetlana Pesegova, Anastasia Samusevich, Evdokiya Zarova, Madina Kardanova, Oxana Skorobogatova and Anna Maltseva
Int. J. Mol. Sci. 2025, 26(14), 6645; https://doi.org/10.3390/ijms26146645 - 11 Jul 2025
Viewed by 650
Abstract
Mitochondria are currently of great interest to scientists. The role of mitochondrial DNA (mtDNA) mutations has been proven in the genesis of more than 200 pathologies, which are called mitochondrial disorders. Therefore, the study of mitochondria and mitochondrial DNA is of great interest [...] Read more.
Mitochondria are currently of great interest to scientists. The role of mitochondrial DNA (mtDNA) mutations has been proven in the genesis of more than 200 pathologies, which are called mitochondrial disorders. Therefore, the study of mitochondria and mitochondrial DNA is of great interest not only for understanding cell biology but also for the treatment and prevention of many mitochondria-related pathologies. There are two main trends of mitochondrial therapy: mitochondrial replacement therapy (MRT) and mitochondrial transplantation therapy (MTT). Also, there are two main categories of MRT based on the source of mitochondria. The heterologous approach includes the following methods: pronuclear transfer technique (PNT), maternal spindle transfer (MST), Polar body genome transfer (PBT) and germinal vesicle transfer (GVT). An alternative approach is the autologous method. One promising autologous technique was the autologous germline mitochondrial energy transfer (AUGMENT), which involved isolating oogonial precursor cells from the patient, extracting their mitochondria, and then injecting them during ICSI. Transmission of defective mtDNA to the next generation can also be prevented by using these approaches. The development of a healthy child, free from genetic disorders, and the prevention of the occurrence of lethal mitochondrial disorders are the main tasks of this method. However, a number of moral, social, and cultural objections have restricted its exploration, since humanity first encountered the appearance of a three-parent baby. Therefore, this review summarizes the causes of mitochondrial diseases, the various methods involved in MRT and the results of their application. In addition, a new technology, mitochondrial transplantation therapy (MTT), is currently being actively studied. MTT is an innovative approach that involves the introduction of healthy mitochondria into damaged tissues, leading to the replacement of defective mitochondria and the restoration of their function. This technology is being actively studied in animals, but there are also reports of its use in humans. A bibliographic review in PubMed and Web of Science databases and a search for relevant clinical trials and news articles were performed. A total of 81 publications were selected for analysis. Methods of MRT procedures were reviewed, their risks described, and the results of their use presented. Results of animal studies of the MTT procedure and attempts to apply this therapy in humans were reviewed. MRT is an effective way to minimize the risk of transmission of mtDNA-related diseases, but it does not eliminate it completely. There is a need for global legal regulation of MRT. MTT is a new and promising method of treating damaged tissues by injecting the body’s own mitochondria. The considered methods are extremely good in theory, but their clinical application in humans and the success of such therapy remain a question for further study. Full article
(This article belongs to the Special Issue Mitochondrial Biology and Reactive Oxygen Species)
Show Figures

Figure 1

16 pages, 773 KiB  
Review
Add-On Technologies That Aim to Improve Oocyte Quality and Embryo Implantation Potential
by Nikos Petrogiannis, Maria Filippa, Kalliopi Chatzovoulou, Savvas Petrogiannis, Ioannis Filippas, Grigoris Grimbizis, Efstratios Kolibianakis and Katerina Chatzimeletiou
Medicina 2025, 61(3), 367; https://doi.org/10.3390/medicina61030367 - 20 Feb 2025
Viewed by 1691
Abstract
Advancements in assisted reproductive technologies (ARTs) have led to the development of various add-on techniques aimed at improving oocyte quality and enhancing embryo implantation potential. These techniques target critical stages of both oocyte and embryo physiology, including oocyte growth and maturation, fertilization, chromosomal [...] Read more.
Advancements in assisted reproductive technologies (ARTs) have led to the development of various add-on techniques aimed at improving oocyte quality and enhancing embryo implantation potential. These techniques target critical stages of both oocyte and embryo physiology, including oocyte growth and maturation, fertilization, chromosomal status, and embryo development. Key approaches involve the optimization of in vitro fertilization (IVF) protocols, recruiting capable follicles giving rise to dynamic oocytes to evolve, culture media supplementation, preimplantation genetic testing (PGT), and mitochondrial replacement therapy (MRT), all of which are designed to enhance oocyte competence through its function and metabolism. The use of PGT has been promising in selecting embryos suitable for transfer, thus optimizing implantation success. Emerging technologies, such as platelet-rich plasma treatment (PRP), time-lapse imaging (TLI), and hyaluronan-rich (HA) culture media, claim to improve ovarian rejuvenation and uterine receptivity, embryo selection, as well as embryo implantation potential, respectively. Evidence for certain add-on approaches remains limited, but ongoing research suggests that the use of such treatments may lead to increased clinical pregnancies and live birth rates, especially in poor-prognosis patients. The present review describes the current state of the add-on innovations, their mechanisms of action, as well as their possibilities to increase ART success rates. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

18 pages, 2045 KiB  
Review
The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA?
by Amira Podolak, Izabela Woclawek-Potocka and Krzysztof Lukaszuk
Cells 2022, 11(5), 797; https://doi.org/10.3390/cells11050797 - 24 Feb 2022
Cited by 41 | Viewed by 9369
Abstract
Mitochondria are well known as ‘the powerhouses of the cell’. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial [...] Read more.
Mitochondria are well known as ‘the powerhouses of the cell’. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte’s mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use. Full article
Show Figures

Figure 1

Back to TopTop