Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = milk thistle flour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1512 KiB  
Article
The ICP-MS Study on the Release of Toxic Trace Elements from the Non-Cereal Flour Matrixes After In Vitro Digestion and Metal Pollution Index Evaluation
by Jiří Nekvapil, Karolína Vilišová, Zdeněk Petřík, Erkan Yalçin, Miroslav Fišera, Robert Gál, Richardos Nikolaos Salek, Martina Mrázková, Martina Bučková and Daniela Sumczynski
Foods 2025, 14(8), 1350; https://doi.org/10.3390/foods14081350 - 14 Apr 2025
Viewed by 523
Abstract
Detailed research analysis of the contents of eight toxic trace elements in non-cereal flours was conducted using inductively coupled plasma mass spectrometry, and the release of elements from the flour matrixes after in vitro digestion was investigated. It also examines dietary intake and [...] Read more.
Detailed research analysis of the contents of eight toxic trace elements in non-cereal flours was conducted using inductively coupled plasma mass spectrometry, and the release of elements from the flour matrixes after in vitro digestion was investigated. It also examines dietary intake and evaluates the metal pollution index. The highest digestibility value was measured with banana flour (92.6%), while grape seed flour was the least digestible, only 44%. The most abundant element was Al, followed by Ni, which was present (except banana flour) at concentrations of more than twice that found in food generally. The flax and milk thistle seed flours showed two orders of magnitude higher amounts of Cd than those measured in other flours. When consuming a 100 g portion of non-cereal flours, a consumer weighing 60 kg is exposed to the highest dietary exposures to Al and Ni (in the order of µg/kg bw); the exposures for the intake of Cd, Sn, Hg, As, Ag, and Pb are of the order of ng/kg bw. Grape seed flour was assessed as a significant contributor to the provisional tolerable weekly intake (PTWI) value of Al (16%); in addition, significant contributions of banana, pumpkin, grape, and milk thistle flours to the PTWI value of Hg, ranging from 15 to 22%, were determined. Furthermore, the contributions of milk thistle and flax seed flours to the provisional tolerable monthly intake (PTMI) value of Cd were also recognized as significant (specifically, 26 and 49%, respectively). The contributions of milk thistle, flax seed, and pumpkin seed flour to tolerable daily intake for Ni were estimated between 19 and 57%. The margin of exposure values for developmental neurotoxicity, nephrotoxicity, and cardiovascular effects obtained for the intake of Pb were considered safe. During the digestion process, the toxic elements that were the most retained in the matrices of grape and pumpkin seed flour were easily released from the banana flour. The retention factor, which was above 50% for Hg in the grape seed flour, was examined as the highest. All toxic trace elements, which were found to still be part of the undigested portion of the flours, could theoretically pass into the large intestine. In the future, more research is needed to clarify the possible carcinogenesis effect of toxic trace elements in the colon. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

16 pages, 1586 KiB  
Article
Enhancing Gluten-Free Muffins with Milk Thistle Seed Proteins: Evaluation of Physicochemical, Rheological, Textural, and Sensory Characteristics
by Muhammed Ozgolet, Muhammed Zahid Kasapoglu, Esra Avcı and Salih Karasu
Foods 2024, 13(16), 2542; https://doi.org/10.3390/foods13162542 - 15 Aug 2024
Cited by 4 | Viewed by 2228
Abstract
This study investigated the potential utilization of milk thistle seed protein (MTP) isolates in gluten-free muffins to enhance the protein quantity and technological attributes. MTP was employed to partially substitute a blend including equal amounts of rice flour and corn starch (RCS) at [...] Read more.
This study investigated the potential utilization of milk thistle seed protein (MTP) isolates in gluten-free muffins to enhance the protein quantity and technological attributes. MTP was employed to partially substitute a blend including equal amounts of rice flour and corn starch (RCS) at 3%, 6%, 9%, and 12%. The study encompassed a rheological assessment of muffin batters and physicochemical, textural, and sensory analyses of the muffins. The consistency coefficient (K) of muffin batters exhibited an increase with the incorporation of MTP, with all batters demonstrating shear-thinning behavior (n < 1). The dough samples exhibited solid-like characteristics attributed to G′ > G″, indicative of their viscoelastic nature. The storage modulus (G′) and loss modulus (G″) escalated with higher levels of MTP, suggesting an overall enhancement in dough viscoelasticity. The muffin containing wheat flour displayed the lowest hardness value, followed by MTP-added muffins at ratios of 12% and 9%. Additionally, MTP-added muffins exhibited greater springiness values than control samples without MTP (C2). However, the oxidative stability of MTP-added muffins was lower than the wheat control muffin (C1) and gluten-free control muffin. The protein content in muffins increased with MTP addition, reaching parity with wheat flour muffins at 6% MTP replacement. Sensory analysis revealed that substituting RCS with up to 6% MTP did not significantly alter the overall quality (p > 0.05), whereas higher MTP levels (9% and 12%) led to a decline in sensory attributes. Incorporating MTP at up to 6% yielded protein-enriched muffins with sensory characteristics comparable to the wheat flour muffin (C1). Furthermore, higher MTP additions (9% and 12%) conferred more favorable textural properties than the C2 muffin. However, the oxidative stability of the control muffins was found to be higher than that of MTP-added muffins. This study suggested that MTP could be a potential ingredient to increase the protein amount and specific volume of gluten-free muffins and to improve textural attributes such as springiness and hardness. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 615 KiB  
Article
Milk Thistle Oilseed Cake Flour Fractions: A Source of Silymarin and Macronutrients for Gluten-Free Bread
by Jan Bedrníček, František Lorenc, Markéta Jarošová, Veronika Bártová, Pavel Smetana, Jaromír Kadlec, Dana Jirotková, Jan Kyselka, Eva Petrášková, Marie Bjelková, Petr Konvalina, Trong Nghia Hoang and Jan Bárta
Antioxidants 2022, 11(10), 2022; https://doi.org/10.3390/antiox11102022 - 13 Oct 2022
Cited by 6 | Viewed by 2810
Abstract
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at [...] Read more.
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at investigating the effects of the addition of milk thistle oilseed cake (MTOC) flour fractions obtained via dry sieving, differing in particle size (unsieved; coarse: >710 µm; medium: 315–710 µm; and fine: <315 µm), on the quality of gluten-free bread and stability of silymarin during breadmaking. The 10% addition of the fractions into gluten-free bread increased the protein, fibre, fat, ash and silymarin content. The breads with the coarse fraction had the highest content of fibre, whereas the breads with the fine fraction excelled in protein, fat and ash content. The medium fraction was characterized as the richest source of silymarin, whilst the fine fraction was the poorest. Silymarin constituents were slightly released during dough rising but also partially decomposed during baking; moreover, silydianin was the most susceptible and degraded the most. The enriched breads had better sensory and textural properties compared to the control bread. The results suggest that MTOC flour fractions can improve the potential health benefits and nutritional profile of gluten-free bread. Full article
Show Figures

Figure 1

6 pages, 513 KiB  
Proceeding Paper
Muffin Enriched with Bioactive Compounds from Milk Thistle By-Product: Baking and Physico–Chemical Properties and Sensory Characteristics
by Daria Polovnikova, Victoria Evlash, Olena Aksonova and Sergey Gubsky
Biol. Life Sci. Forum 2022, 18(1), 49; https://doi.org/10.3390/Foods2022-12930 - 30 Sep 2022
Viewed by 1480
Abstract
Muffins are sweet, high-calorie baked products with a typical porous structure and high volume, which confer a spongy texture. Because of this texture and good taste, these products are highly valued by consumers. However, muffins have low nutritional value. The aim of this [...] Read more.
Muffins are sweet, high-calorie baked products with a typical porous structure and high volume, which confer a spongy texture. Because of this texture and good taste, these products are highly valued by consumers. However, muffins have low nutritional value. The aim of this study was to develop a technology of muffins as a functional product with hepatoprotective activity using defatted milk thistle powder (DMTP). The incorporation of this dietary supplement was carried out by the partial replacement of flour in the classic formulation. Physico-chemical and sensory analyses were performed to evaluate muffins with and without defatted milk thistle seed powder. The moisture sorption isotherms of the porous structure were determined by the gravimetric method with a MacBen microbalance over a 0.05–1.0 water activity range, and the data were fitted to Brunauer–Emmet–Teller (BET) and Guggenheim–Anderson–de Boer (GAB) models. It was established that the addition of milk thistle powder reduces baking, increases the drying out of products and the water-holding capacity, and increases the volume and crumb density of muffins. The microstructure of the muffins was examined using a moisture sorption isotherm. The moisture sorption isotherms of muffin samples presented a sigmoid shape and belong to type II of classification. The hysteresis loops of the samples are almost the same, which indicates similar structural data. The capacity of the monolayer according to the BET models varied in the range of 1.63–2.15 mmol/g of the dried sample, showing a slightly decreasing trend for muffins with DMTP. The GAB model accurately fits the adsorption isotherms in the water activity range from 0.05 to 0.88. The sensory results from a consumer evaluation indicate that both samples were characterized by the traditional pleasant appearance of the muffin, without visible flaws and with a pleasant taste and a good flour aroma. The result is a muffin with the same texture and sensory characteristics but as a potential functional food. Full article
Show Figures

Figure 1

17 pages, 1213 KiB  
Article
Oilseed Cake Flour Composition, Functional Properties and Antioxidant Potential as Effects of Sieving and Species Differences
by Jan Bárta, Veronika Bártová, Markéta Jarošová, Josef Švajner, Pavel Smetana, Jaromír Kadlec, Vladimír Filip, Jan Kyselka, Markéta Berčíková, Zbyněk Zdráhal, Marie Bjelková and Marcin Kozak
Foods 2021, 10(11), 2766; https://doi.org/10.3390/foods10112766 - 11 Nov 2021
Cited by 52 | Viewed by 5986
Abstract
Oilseed cakes are produced as a by-product of oil pressing and are mostly used as feed. Their use for human consumption is due to the functional properties and benefits for human health. Herein, oilseed cake flours of eight species (flax, hemp, milk thistle, [...] Read more.
Oilseed cakes are produced as a by-product of oil pressing and are mostly used as feed. Their use for human consumption is due to the functional properties and benefits for human health. Herein, oilseed cake flours of eight species (flax, hemp, milk thistle, poppy, pumpkin, rapeseed, safflower, sunflower) were sieved into fractions above (A250) and below (B250) 250 µm. The chemical composition, SDS-PAGE profiles, colour, functional properties and antioxidant activities of these flours were evaluated. The B250 fractions were evaluated as being protein and ash rich, reaching crude protein and ash content ranging from 31.78% (milk thistle) to 57.47% (pumpkin) and from 5.0% (flax) to 11.19% (poppy), respectively. A high content of carbohydrates was found in the flours of hemp, milk thistle and safflower with a significant increase for the A250 fraction, with a subsequent relation to a high water holding capacity (WHC) for the A250 fraction (flax, poppy, pumpkin and sunflower). The A250 milk thistle flour was found to have the richest in polyphenols content (TPC) (40.89 mg GAE/g), with the highest antioxidant activity using an ABTS•+ assay (101.95 mg AAE/g). The A250 fraction for all the species exhibited lower lightness than the B250 fraction. The obtained results indicate that sieving oilseed flour with the aim to prepare flours with specific functional characteristics and composition is efficient only in combination with a particular species. Full article
Show Figures

Graphical abstract

Back to TopTop