Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mild hyperbaric chamber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2590 KB  
Article
Decision-Time Learning and Planning Integrated Control for the Mild Hyperbaric Chamber
by Nan Zhang, Qijing Lin and Zhuangde Jiang
Algorithms 2025, 18(7), 380; https://doi.org/10.3390/a18070380 - 23 Jun 2025
Viewed by 720
Abstract
Plateau hypoxia represents a type of hypobaric hypoxia caused by reduced atmospheric pressure at high altitudes. Pressurization therapy is one of the most effective methods for alleviating acute high-altitude sickness. This study focuses on the development of an advanced control system for a [...] Read more.
Plateau hypoxia represents a type of hypobaric hypoxia caused by reduced atmospheric pressure at high altitudes. Pressurization therapy is one of the most effective methods for alleviating acute high-altitude sickness. This study focuses on the development of an advanced control system for a vehicle-mounted mild hyperbaric chamber (MHBC) designed for the prevention and treatment of plateau hypoxia. Conventional control methods struggle to cope with the high complexity and inherent uncertainties associated with MHBC control tasks, thereby motivating the exploration of sequential decision-making approaches such as reinforcement learning. Nevertheless, the application of sequential decision-making in MHBC control encounters several challenges, including data inefficiency and non-stationary dynamics. The system’s low tolerance for trial-and-error may lead to component damage or unsafe operating conditions, and anomalies such as valve failure can emerge during long-term operation, compromising system stability. To address these challenges, this study proposes a decision-time learning and planning integrated framework for MHBC control. Specifically, an innovative latent model embedding decision-time learning is designed for system identification, separately managing system uncertainties to fine-tune the model output. Furthermore, a decision-time planning algorithm is developed and the planning process is further guided by incorporating a value network and an enhanced online policy. Experimental results demonstrate that the proposed decision-time learning and planning integrated approaches achieve notable performance in MHBC control. Full article
(This article belongs to the Special Issue Algorithmic Approaches to Control Theory and System Modeling)
Show Figures

Figure 1

13 pages, 1902 KB  
Article
Mild Hyperbaric Oxygen Exposure Enhances Peripheral Circulatory Natural Killer Cells in Healthy Young Women
by Badur Un Nisa, Ryosuke Nakanishi, Minoru Tanaka, Hao Lin, Takumi Hirabayashi, Noriaki Maeshige, Hiroyo Kondo and Hidemi Fujino
Life 2023, 13(2), 408; https://doi.org/10.3390/life13020408 - 1 Feb 2023
Cited by 7 | Viewed by 5266
Abstract
Mild hyperbaric oxygen (HBO) enhances oxygen absorption in blood, relieving fatigue without causing oxidative stress. The benefits of mild HBO have been recognized in the treatment of lifestyle-related diseases and hypertension, but no research has been conducted on its effects on immunity. The [...] Read more.
Mild hyperbaric oxygen (HBO) enhances oxygen absorption in blood, relieving fatigue without causing oxidative stress. The benefits of mild HBO have been recognized in the treatment of lifestyle-related diseases and hypertension, but no research has been conducted on its effects on immunity. The aim of the present study is to investigate the effect of mild HBO on natural killer (NK) cells and cytokines in healthy young women. This crossover randomized control trial was conducted with 16 healthy young women. Participants were randomly exposed to normobaric oxygen (NBO; 1.0 atmospheres absolute (ATA), 20.8% oxygen) and mild HBO conditions (1.4 ATA, 35–40% oxygen, injected 18L oxygen per minute) in a hyperbaric oxygen chamber for 70 min. Heart rate, parasympathetic activity, NK cell count, interleukin (IL)-6, IL-12p70 and derivatives of reactive oxygen metabolites (d-ROMs) were measured before and after both exposures. In the NBO condition, parasympathetic activity remained unchanged, whereas after mild HBO exposure, parasympathetic activity was significantly increased. NK cells remained unchanged after NBO exposure, while NK cells were increased after exposure to mild HBO. Exposure to mild HBO did not increase d-ROM values, IL-6 and IL-12p70 protein levels. These findings suggest that exposure to mild HBO can be a useful protocol to increase NK cells by regulating parasympathetic activity via increasing oxygen delivery. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 1552 KB  
Article
A Case Series of 39 United States Veterans with Mild Traumatic Brain Injury Treated with Hyperbaric Oxygen Therapy
by Alison C. Bested, Arif M. Rana, Patrick Hardigan, Jerome Niyirora, Amanpreet Cheema, George Antony, Philip A. Defina and Calixto Machado
Clin. Transl. Neurosci. 2022, 6(3), 21; https://doi.org/10.3390/ctn6030021 - 31 Aug 2022
Cited by 1 | Viewed by 8918
Abstract
Importance: The Defense and Veterans Brain Injury Center reported 358,088 mild traumatic brain injury (mTBI) among U.S. service members worldwide between the years 2000 and 2020. Veterans with mTBI have higher rates of Post-Traumatic Stress Disorder (PTSD), depressive disorder, substance use disorder, anxiety [...] Read more.
Importance: The Defense and Veterans Brain Injury Center reported 358,088 mild traumatic brain injury (mTBI) among U.S. service members worldwide between the years 2000 and 2020. Veterans with mTBI have higher rates of Post-Traumatic Stress Disorder (PTSD), depressive disorder, substance use disorder, anxiety disorder, and suicide than their healthy counterparts. Currently, there is no effective treatment for mTBI. Objective: To assess the efficacy of hyperbaric oxygen therapy (HBOT) as a treatment option for mTBI. Design, Setting, Participants: This is a case series of 39 U.S. Veterans diagnosed with mTBI and treated with HBOT. Of these participants, 36 were men and 3 women, and their ages ranged between 28 and 69. The treatment was administered by The 22 Project (a veteran-centered nonprofit organization) using monoplace hyperbaric chambers located in Delray Beach, Florida. Neuroimaging using Single Photon Emission Computer Tomography (SPECT) brain scans performed pre- and post-HBOT were made available for secondary analysis. Nilearn Python Library was utilized to visualize the corresponding neuroimaging data. A two-sided paired t-test in R was used to compare the pre- and post-treatment results. Intervention: A full treatment of HBOT involved 40 sessions. Each session consisted of the administration of 100% oxygen at 1.5 atmospheres for 90 min, twice a day, for 20 days, Mondays to Fridays only. Main Outcome and Measure: Perfusion in the brain’s Brodmann Areas (BA) comparing pre- and post-HBOT using NeuroGam software analysis from brain SPECT scan neuroimaging and multi-symptom self-reports. Results: A comparison between the pre- and post-HBOT brain scans showed significant improvement in the brain perfusion, and the difference was statistically significant (p < 0.001). Separately, participants reported reduced pain, improved mood, and better sleep, an outcome that translated into an average of about 46.6% improvement in the measured symptoms. Conclusions and Relevance: This series demonstrated that HBOT could be a useful treatment for mTBI in U.S. veterans. The participants in the study showed marked improvement in both brain perfusion measured on SPECT scan imaging and measured mTBI symptoms. This is the first study to use brain SPECT scans with quantitative numerical measurements to demonstrate improvement in brain perfusion in veterans with mild TBI treated with HBOT and measured mTBI symptoms. Future research studies are currently being done to validate these important findings. Full article
Show Figures

Figure 1

Back to TopTop