Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = microsomal ethanol oxidizing system (MEOS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 806 KB  
Review
Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2
by Takeshi Haseba
Int. J. Mol. Sci. 2025, 26(19), 9479; https://doi.org/10.3390/ijms26199479 - 27 Sep 2025
Viewed by 3831
Abstract
Alcohol metabolism in the body is a key theme in medical research on alcohol. It is primarily regulated by the alcohol dehydrogenase (ADH) and mitochondrial NADH reoxidation in the liver. Class I ADH1 is a well-known ADH isozyme and a key enzyme in [...] Read more.
Alcohol metabolism in the body is a key theme in medical research on alcohol. It is primarily regulated by the alcohol dehydrogenase (ADH) and mitochondrial NADH reoxidation in the liver. Class I ADH1 is a well-known ADH isozyme and a key enzyme in alcohol metabolism, with the lowest Kms for ethanol and the highest sensitivity to pyrazole (Pz) among the ADH isozymes. However, a Pz-insensitive metabolic pathway also plays a role in systemic alcohol metabolism, with increasing metabolic contributions at higher blood alcohol concentrations (BACs) and under chronic alcohol consumption (CAC). The Pz-insensitive pathway is referred to as the non-ADH pathway—specifically, it is a non-ADH1 pathway—and is assumed to involve the microsomal ethanol oxidizing system (MEOS) or catalase, as both enzymes are insensitive to Pz and exhibit higher Kms than ADH1. The MEOS is a favored candidate for this pathway, as its activity markedly increases with the rate of alcohol metabolism under CAC. However, the role of the MEOS in alcohol metabolism has not been proven in vivo (even under CAC conditions), nor has that of catalase. Here, we report Class III ADH3 as a new candidate in the non-ADH1 pathway, as it also has a lower sensitivity to Pz and a higher Km. It is markedly activated by lowering Km following the addition of amphiphilic substances, which increases the solution’s hydrophobicity in the reaction medium; additionally, Nile red staining demonstrates a higher solution hydrophobicity in the cytoplasm of mouse liver cells. The rate of alcohol metabolism in ADH1 knockout (Adh1−/−) mice—which depends solely on the non-ADH1 pathway—increased by more than twice under CAC and was significantly correlated with the amount of liver ADH3 protein, but not with CYP2E1 protein (a main component of the MEOS). The rate of alcohol metabolism in Adh3−/− mice lacking ADH3 decreased in a dose-dependent manner compared with wild mice. The liver ADH3 protein in wild-type mice increased in line with the ADH1 protein under CAC. These data suggest that ADH3 contributes to alcohol metabolism in vivo as a non-ADH1 pathway and to the enhancement of alcohol metabolism under CAC through activation of the ADH1/ADH3/NADH reoxidation system. In alcoholic liver diseases, ADH1 activity decreased with the progression of liver disease, while ADH3 activity increased or was maintained even in alcoholic liver cirrhosis. Therefore, the role of ADH3 in alcohol metabolism may be increased in the context of alcoholic liver diseases, complementing the reduced role of ADH1. It has also been suggested that Class II ADH2, Class IV ADH4, and aldehyde dehydrogenase (ALDH) 2 play roles in alcohol metabolism in vivo under certain limited conditions. However, ADH2 and 4 may not contribute to the enhancement of alcohol metabolism through CAC. Full article
(This article belongs to the Special Issue Molecular Advances in Alcohol Metabolism)
Show Figures

Figure 1

22 pages, 1479 KB  
Review
Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury
by Manuela G. Neuman, Helmut K. Seitz, Rolf Teschke, Stephen Malnick, Kamisha L. Johnson-Davis, Lawrence B. Cohen, Anit German, Nicolas Hohmann, Bernhardo Moreira, George Moussa and Mihai Opris
Curr. Issues Mol. Biol. 2022, 44(3), 1294-1315; https://doi.org/10.3390/cimb44030087 - 16 Mar 2022
Cited by 7 | Viewed by 5015
Abstract
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the [...] Read more.
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented. Full article
Show Figures

Figure 1

28 pages, 10030 KB  
Review
Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research
by Manuela G. Neuman, Helmut Karl Seitz, Samuel W. French, Stephen Malnick, Heidekazu Tsukamoto, Lawrence B. Cohen, Paula Hoffman, Boris Tabakoff, Michael Fasullo, Laura E. Nagy, Pamela L. Tuma, Bernd Schnabl, Sebastian Mueller, Jennifer L. Groebner, French A. Barbara, Jia Yue, Afifiyan Nikko, Mendoza Alejandro, Tillman Brittany, Vitocruz Edward, Kylie Harrall, Laura Saba and Opris Mihaiadd Show full author list remove Hide full author list
Biomedicines 2020, 8(3), 63; https://doi.org/10.3390/biomedicines8030063 - 18 Mar 2020
Cited by 17 | Viewed by 7052
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) [...] Read more.
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10–20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH. Full article
(This article belongs to the Special Issue Alcoholic Liver Disease: Diagnostics and Therapeutics)
Show Figures

Graphical abstract

12 pages, 540 KB  
Review
Alcoholic Liver Disease: Current Mechanistic Aspects with Focus on Their Clinical Relevance
by Rolf Teschke
Biomedicines 2019, 7(3), 68; https://doi.org/10.3390/biomedicines7030068 - 5 Sep 2019
Cited by 54 | Viewed by 7353
Abstract
The spectrum of alcoholic liver disease (ALD) is broad and includes alcoholic fatty liver, alcoholic steatohepatitis, alcoholic hepatitis, alcoholic fibrosis, alcoholic cirrhosis, and alcoholic hepatocellular carcinoma, best explained as a five-hit sequelae of injurious steps. ALD is not primarily the result of malnutrition [...] Read more.
The spectrum of alcoholic liver disease (ALD) is broad and includes alcoholic fatty liver, alcoholic steatohepatitis, alcoholic hepatitis, alcoholic fibrosis, alcoholic cirrhosis, and alcoholic hepatocellular carcinoma, best explained as a five-hit sequelae of injurious steps. ALD is not primarily the result of malnutrition as assumed for many decades but due to the ingested alcohol and its metabolic consequences although malnutrition may marginally contribute to disease aggravation. Ethanol is metabolized in the liver to the heavily reactive acetaldehyde via the alcohol dehydrogenase (ADH) and the cytochrome P450 isoform 2E1 of the microsomal ethanol-oxidizing system (MEOS). The resulting disturbances modify not only the liver parenchymal cells but also non-parenchymal cells such as Kupffer cells (KCs), hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). These are activated by acetaldehyde, reactive oxygen species (ROS), and endotoxins, which are produced from bacteria in the gut and reach the liver due to gut leakage. A variety of intrahepatic signaling pathways and innate or acquired immune reactions are under discussion contributing to the pathogenesis of ALD via the five injurious hits responsible for disease aggravation. As some of the mechanistic steps are based on studies with in vitro cell systems or animal models, respective proposals for humans may be considered as tentative. However, sufficient evidence is provided for clinical risk factors that include the amount of alcohol used daily for more than a decade, gender differences with higher susceptibility of women, genetic predisposition, and preexisting liver disease. In essence, efforts within the last years were devoted to shed more light in the pathogenesis of ALD, much has been achieved but issues remain to what extent results obtained from experimental studies can be transferred to humans. Full article
(This article belongs to the Special Issue Alcoholic Liver Disease: Diagnostics and Therapeutics)
Show Figures

Graphical abstract

57 pages, 4918 KB  
Review
Alcoholic Liver Disease: Alcohol Metabolism, Cascade of Molecular Mechanisms, Cellular Targets, and Clinical Aspects
by Rolf Teschke
Biomedicines 2018, 6(4), 106; https://doi.org/10.3390/biomedicines6040106 - 12 Nov 2018
Cited by 218 | Viewed by 37655
Abstract
Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde [...] Read more.
Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde as its first oxidation product generated via hepatic alcohol dehydrogenase (ADH) and the microsomal ethanol-oxidizing system (MEOS), which depends on cytochrome P450 2E1 (CYP 2E1), and is inducible by chronic alcohol use. MEOS induction accelerates the metabolism of ethanol to acetaldehyde that facilitates organ injury including the liver, and it produces via CYP 2E1 many reactive oxygen species (ROS) such as ethoxy radical, hydroxyethyl radical, acetyl radical, singlet radical, superoxide radical, hydrogen peroxide, hydroxyl radical, alkoxyl radical, and peroxyl radical. These attack hepatocytes, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells, and their signaling mediators such as interleukins, interferons, and growth factors, help to initiate liver injury including fibrosis and cirrhosis in susceptible individuals with specific risk factors. Through CYP 2E1-dependent ROS, more evidence is emerging that alcohol generates lipid peroxides and modifies the intestinal microbiome, thereby stimulating actions of endotoxins produced by intestinal bacteria; lipid peroxides and endotoxins are potential causes that are involved in alcoholic liver injury. Alcohol modifies SIRT1 (Sirtuin-1; derived from Silent mating type Information Regulation) and SIRT2, and most importantly, the innate and adapted immune systems, which may explain the individual differences of injury susceptibility. Metabolic pathways are also influenced by circadian rhythms, specific conditions known from living organisms including plants. Open for discussion is a 5-hit working hypothesis, attempting to define key elements involved in injury progression. In essence, although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone. Full article
Show Figures

Graphical abstract

17 pages, 287 KB  
Review
A New View of Alcohol Metabolism and Alcoholism—Role of the High-Km Class Ⅲ Alcohol Dehydrogenase (ADH3)
by Takeshi Haseba and Youkichi Ohno
Int. J. Environ. Res. Public Health 2010, 7(3), 1076-1092; https://doi.org/10.3390/ijerph7031076 - 15 Mar 2010
Cited by 43 | Viewed by 17118
Abstract
The conventional view is that alcohol metabolism is carried out by ADH1 (Class I) in the liver. However, it has been suggested that another pathway plays an important role in alcohol metabolism, especially when the level of blood ethanol is high or when [...] Read more.
The conventional view is that alcohol metabolism is carried out by ADH1 (Class I) in the liver. However, it has been suggested that another pathway plays an important role in alcohol metabolism, especially when the level of blood ethanol is high or when drinking is chronic. Over the past three decades, vigorous attempts to identify the enzyme responsible for the non-ADH1 pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. Recently, using ADH3-null mutant mice, we demonstrated that ADH3 (Class III), which has a high Km and is a ubiquitous enzyme of ancient origin, contributes to systemic alcohol metabolism in a dose-dependent manner, thereby diminishing acute alcohol intoxication. Although the activity of ADH3 toward ethanol is usually low in vitro due to its very high Km, the catalytic efficiency (kcat/Km) is markedly enhanced when the solution hydrophobicity of the reaction medium increases. Activation of ADH3 by increasing hydrophobicity should also occur in liver cells; a cytoplasmic solution of mouse liver cells was shown to be much more hydrophobic than a buffer solution when using Nile red as a hydrophobicity probe. When various doses of ethanol are administered to mice, liver ADH3 activity is dynamically regulated through induction or kinetic activation, while ADH1 activity is markedly lower at high doses (3–5 g/kg). These data suggest that ADH3 plays a dynamic role in alcohol metabolism, either collaborating with ADH1 or compensating for the reduced role of ADH1. A complex two-ADH model that ascribes total liver ADH activity to both ADH1 and ADH3 explains the dose-dependent changes in the pharmacokinetic parameters (b, CLT, AUC) of blood ethanol very well, suggesting that alcohol metabolism in mice is primarily governed by these two ADHs. In patients with alcoholic liver disease, liver ADH3 activity increases, while ADH1 activity decreases, as alcohol intake increases. Furthermore, ADH3 is induced in damaged cells that have greater hydrophobicity, whereas ADH1 activity is lower when there is severe liver disease. These data suggest that chronic binge drinking and the resulting liver disease shifts the key enzyme in alcohol metabolism from low-Km ADH1 to high-Km ADH3, thereby reducing the rate of alcohol metabolism. The interdependent increase in the ADH3/ADH1 activity ratio and AUC may be a factor in the development of alcoholic liver disease. However, the adaptive increase in ADH3 sustains alcohol metabolism, even in patients with alcoholic liver cirrhosis, which makes it possible for them to drink themselves to death. Thus, the regulation of ADH3 activity may be important in preventing alcoholism development. Full article
(This article belongs to the Special Issue Alcohol and Public Health)
Back to TopTop