Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = microfibre resonator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 885 KiB  
Review
Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing
by Pengfei Wang, Lin Bo, Yuliya Semenova, Gerald Farrell and Gilberto Brambilla
Biosensors 2015, 5(3), 471-499; https://doi.org/10.3390/bios5030471 - 22 Jul 2015
Cited by 40 | Viewed by 8705
Abstract
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical [...] Read more.
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. Full article
(This article belongs to the Special Issue Optical Sensors for Biomedical Applications)
Show Figures

Figure 1

8 pages, 327 KiB  
Article
Integrated Microfibre Device for Refractive Index and Temperature Sensing
by Kok-Sing Lim, Iman Aryanfar, Wu-Yi Chong, Yew-Ken Cheong, Sulaiman W. Harun and Harith Ahmad
Sensors 2012, 12(9), 11782-11789; https://doi.org/10.3390/s120911782 - 29 Aug 2012
Cited by 60 | Viewed by 7141
Abstract
A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between [...] Read more.
A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop