Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = microbial oncogenic proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2931 KiB  
Article
E. coli Biomolecules Increase Glycolysis and Invasive Potential in Lung Adenocarcinoma
by Alexis A. Vega, Parag P. Shah, Eric C. Rouchka, Brian F. Clem, Calista R. Dean, Natassja Woodrum, Preeti Tanwani, Leah J. Siskind and Levi J. Beverly
Cancers 2025, 17(3), 380; https://doi.org/10.3390/cancers17030380 - 24 Jan 2025
Viewed by 1197
Abstract
Introduction: Recent studies have discovered that lung cancer subtypes possess distinct microbiome profiles within their tumor microenvironment. Additionally, the tumor-associated microbiome exhibits altered bacterial pathways, suggesting that certain bacterial families are more capable of facilitating tumor progression than others. We hypothesize that there [...] Read more.
Introduction: Recent studies have discovered that lung cancer subtypes possess distinct microbiome profiles within their tumor microenvironment. Additionally, the tumor-associated microbiome exhibits altered bacterial pathways, suggesting that certain bacterial families are more capable of facilitating tumor progression than others. We hypothesize that there exists a crosstalk between lung adenocarcinoma (LUAD) cells and bacterial cells. Methods and Materials: RNA sequencing (RNA-seq) was performed on LUAD cell lines to explore the paracrine signaling effects of bacterial biomolecules. Based on our RNA-seq data, we investigated glycolysis by measuring glucose uptake and lactate production, invasive potential through invasion assays, and epithelial-to-mesenchymal transition (EMT) markers. Since lipopolysaccharides (LPS), abundant on the cell walls of Gram-negative bacteria, can activate toll-like receptor 4 (TLR4), we inhibited TLR4 with C34 to assess its relationship with the observed phenotypic changes. To identify the bacterial biomolecules responsible for these changes, we treated the media with RNAse enzyme, charcoal or dialyzed away molecules larger than 3 kDa. Results and Discussion: RNA-seq revealed 948 genes upregulated in the presence of E. coli biomolecules. Among these, we observed increased expression of Hexokinase II (HKII), JUN proto-oncogene, and Snail Family Transcriptional Repressor 1. We verified the elevation of glycolytic enzymes through Western blot and saw elevation of 2-deoxyglucose uptake and lactate production in LUAD cell lines incubated in E. coli biomolecules. In addition to E. coli elevating glycolysis in LUAD cell lines, E. coli exposure enhanced invasive potential as demonstrated by Boyden chamber assays. Notably, inhibition of TLR4 did not reduce the impact of E. coli biomolecules on glycolysis or the invasive potential of LUAD. Modulating the E. coli-supplemented media with RNAse enzyme or dextran-coated charcoal or using a spin column to remove biomolecules smaller than 3 kDa resulted in changes in HKII and Claudin protein expression. These findings suggest a direct relationship between E. coli and LUAD, wherein several cancer hallmarks are upregulated. Future studies should further investigate these bacterial biomolecules and their role in the tumor microenvironment to fully understand the impact of microbial shifts on cancer progression. Full article
(This article belongs to the Special Issue Lung Cancer—Molecular Insights and Targeted Therapies (Volume II))
Show Figures

Figure 1

24 pages, 14241 KiB  
Article
Pigmented Microbial Extract (PMB) from Exiguobacterium Species MB2 Strain (PMB1) and Bacillus subtilis Strain MB1 (PMB2) Inhibited Breast Cancer Cells Growth In Vivo and In Vitro
by Deepa R. Bandi, Ch M. Kumari Chitturi, Jamuna Bai Aswathanarayan, Prashant Kumar M. Veeresh, Venugopal R. Bovilla, Olga A. Sukocheva, Potireddy Suvarnalatha Devi, Suma M. Natraj and SubbaRao V. Madhunapantula
Int. J. Mol. Sci. 2023, 24(24), 17412; https://doi.org/10.3390/ijms242417412 - 12 Dec 2023
Cited by 1 | Viewed by 1962
Abstract
Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically [...] Read more.
Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1. Full article
(This article belongs to the Special Issue Hormone Signaling in Cancers and Cancer-Promoting Pathologies)
Show Figures

Figure 1

12 pages, 1594 KiB  
Article
Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells
by Sabrina Nicolò, Alberto Antonelli, Michele Tanturli, Ilaria Baccani, Chiara Bonaiuto, Giuseppe Castronovo, Gian Maria Rossolini, G. Mattiuz and M. G. Torcia
Int. J. Mol. Sci. 2023, 24(8), 7173; https://doi.org/10.3390/ijms24087173 - 12 Apr 2023
Cited by 21 | Viewed by 3033
Abstract
Vaginal dysbiosis is characterized by a decrease in the relative abundance of Lactobacillus species in favor of other species. This condition facilitates infections by sexually transmitted pathogens including high risk (HR)-human papilloma viruses (HPVs) involved in the development of cervical cancer. Some vaginal [...] Read more.
Vaginal dysbiosis is characterized by a decrease in the relative abundance of Lactobacillus species in favor of other species. This condition facilitates infections by sexually transmitted pathogens including high risk (HR)-human papilloma viruses (HPVs) involved in the development of cervical cancer. Some vaginal dysbiosis bacteria contribute to the neoplastic progression by inducing chronic inflammation and directly activating molecular pathways involved in carcinogenesis. In this study, SiHa cells, an HPV-16-transformed epithelial cell line, were exposed to different representative vaginal microbial communities. The expression of the HPV oncogenes E6 and E7 and the production of relative oncoproteins was evaluated. The results showed that Lactobacillus crispatus and Lactobacillus gasseri modulated the basal expression of the E6 and E7 genes of SiHa cells and the production of the E6 and E7 oncoproteins. Vaginal dysbiosis bacteria had contrasting effects on E6/E7 gene expression and protein production. The expression of the E6 and E7 genes and the production of the relative oncoproteins was increased by strains of Gardnerella vaginalis and, to a lesser extent, by Megasphaera micronuciformis. In contrast, Prevotella bivia decreased the expression of oncogenes and the production of the E7 protein. A decreased amount of p53 and pRb was found in the cultures of SiHa cells with M. micronuciformis, and accordingly, in the same cultures, a higher percentage of cells progressed to the S-phase of the cell cycle compared to the untreated or Lactobacillus-stimulated cultures. These data confirm that L. crispatus represents the most protective component of the vaginal microbiota against neoplastic progression of HR-HPV infected cells, while M. micronuciformis and, to a lesser extent, G. vaginalis may directly interfere in the oncogenic process, inducing or maintaining the production of viral oncoproteins. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 2253 KiB  
Article
High-Amylose Maize, Potato, and Butyrylated Starch Modulate Large Intestinal Fermentation, Microbial Composition, and Oncogenic miRNA Expression in Rats Fed A High-Protein Meat Diet
by Tina S. Nielsen, Zach Bendiks, Bo Thomsen, Matthew E. Wright, Peter K. Theil, Benjamin L. Scherer and Maria L. Marco
Int. J. Mol. Sci. 2019, 20(9), 2137; https://doi.org/10.3390/ijms20092137 - 30 Apr 2019
Cited by 49 | Viewed by 6619
Abstract
High red meat intake is associated with the risk of colorectal cancer (CRC), whereas dietary fibers, such as resistant starch (RS) seemed to protect against CRC. The aim of this study was to determine whether high-amylose potato starch (HAPS), high-amylose maize starch (HAMS), [...] Read more.
High red meat intake is associated with the risk of colorectal cancer (CRC), whereas dietary fibers, such as resistant starch (RS) seemed to protect against CRC. The aim of this study was to determine whether high-amylose potato starch (HAPS), high-amylose maize starch (HAMS), and butyrylated high-amylose maize starch (HAMSB)—produced by an organocatalytic route—could oppose the negative effects of a high-protein meat diet (HPM), in terms of fermentation pattern, cecal microbial composition, and colonic biomarkers of CRC. Rats were fed a HPM diet or an HPM diet where 10% of the maize starch was substituted with either HAPS, HAMS, or HAMSB, for 4 weeks. Feces, cecum digesta, and colonic tissue were obtained for biochemical, microbial, gene expression (oncogenic microRNA), and immuno-histochemical (O6-methyl-2-deoxyguanosine (O6MeG) adduct) analysis. The HAMS and HAMSB diets shifted the fecal fermentation pattern from protein towards carbohydrate metabolism. The HAMSB diet also substantially increased fecal butyrate concentration and the pool, compared with the other diets. All three RS treatments altered the cecal microbial composition in a diet specific manner. HAPS and HAMSB showed CRC preventive effects, based on the reduced colonic oncogenic miR17-92 cluster miRNA expression, but there was no significant diet-induced differences in the colonic O6MeG adduct levels. Overall, HAMSB consumption showed the most potential for limiting the negative effects of a high-meat diet. Full article
(This article belongs to the Special Issue Nutrition and Gut Health)
Show Figures

Graphical abstract

21 pages, 2846 KiB  
Article
Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein
by Melissa Togtema, Greg Hussack, Guillem Dayer, Megan R. Teghtmeyer, Shalini Raphael, Jamshid Tanha and Ingeborg Zehbe
Int. J. Mol. Sci. 2019, 20(9), 2088; https://doi.org/10.3390/ijms20092088 - 28 Apr 2019
Cited by 13 | Viewed by 5356
Abstract
Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is [...] Read more.
Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo. Full article
Show Figures

Figure 1

18 pages, 3278 KiB  
Review
Proteasome-Rich PaCS as an Oncofetal UPS Structure Handling Cytosolic Polyubiquitinated Proteins. In Vivo Occurrence, in Vitro Induction, and Biological Role
by Enrico Solcia, Vittorio Necchi, Patrizia Sommi and Vittorio Ricci
Int. J. Mol. Sci. 2018, 19(9), 2767; https://doi.org/10.3390/ijms19092767 - 14 Sep 2018
Cited by 1 | Viewed by 4150
Abstract
In this article, we outline and discuss available information on the cellular site and mechanism of proteasome interaction with cytosolic polyubiquitinated proteins and heat-shock molecules. The particulate cytoplasmic structure (PaCS) formed by barrel-like particles, closely reproducing in vivo the high-resolution structure of 26S [...] Read more.
In this article, we outline and discuss available information on the cellular site and mechanism of proteasome interaction with cytosolic polyubiquitinated proteins and heat-shock molecules. The particulate cytoplasmic structure (PaCS) formed by barrel-like particles, closely reproducing in vivo the high-resolution structure of 26S proteasome as isolated in vitro, has been detected in a variety of fetal and neoplastic cells, from living tissue or cultured cell lines. Specific trophic factors and interleukins were found to induce PaCS during in vitro differentiation of dendritic, natural killer (NK), or megakaryoblastic cells, apparently through activation of the MAPK-ERK pathway. Direct interaction of CagA bacterial oncoprotein with proteasome was shown inside the PaCSs of a Helicobacter pylori-infected gastric epithelium, a finding suggesting a role for PaCS in CagA-mediated gastric carcinogenesis. PaCS dissolution and autophagy were seen after withdrawal of inducing factors. PaCS-filled cell blebs and ectosomes were found in some cells and may represent a potential intercellular discharge and transport system of polyubiquitinated antigenic proteins. PaCS differs substantially from the inclusion bodies, sequestosomes, and aggresomes reported in proteinopathies like Huntington or Parkinson diseases, which usually lack PaCS. The latter seems more linked to conditions of increased cell proliferation/differentiation, implying an increased functional demand to the ubiquitin–proteasome system. Full article
(This article belongs to the Special Issue Proteostasis and Proteasome Inhibitors)
Show Figures

Figure 1

16 pages, 1573 KiB  
Review
Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors
by Steffen Backert and Nicole Tegtmeyer
Toxins 2017, 9(4), 115; https://doi.org/10.3390/toxins9040115 - 24 Mar 2017
Cited by 79 | Viewed by 11105
Abstract
Helicobacter pylori is a highly successful human bacterium, which is exceptionally equipped to persistently inhabit the human stomach. Colonization by this pathogen is associated with gastric disorders ranging from chronic gastritis and peptic ulcers to cancer. Highly virulent H. pylori strains express the [...] Read more.
Helicobacter pylori is a highly successful human bacterium, which is exceptionally equipped to persistently inhabit the human stomach. Colonization by this pathogen is associated with gastric disorders ranging from chronic gastritis and peptic ulcers to cancer. Highly virulent H. pylori strains express the well-established adhesins BabA/B, SabA, AlpA/B, OipA, and HopQ, and a type IV secretion system (T4SS) encoded by the cag pathogenicity island (PAI). The adhesins ascertain intimate bacterial contact to gastric epithelial cells, while the T4SS represents an extracellular pilus-like structure for the translocation of the effector protein CagA. Numerous T4SS components including CagI, CagL, CagY, and CagA have been shown to target the integrin-β1 receptor followed by translocation of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine and CagA-containing outer membrane vesicles may also play a role in the delivery process. Translocated CagA undergoes tyrosine phosphorylation in C-terminal EPIYA-repeat motifs by oncogenic Src and Abl kinases. CagA then interacts with an array of host signaling proteins followed by their activation or inactivation in phosphorylation-dependent and phosphorylation-independent fashions. We now count about 25 host cell binding partners of intracellular CagA, which represent the highest quantity of all currently known virulence-associated effector proteins in the microbial world. Here we review the research progress in characterizing interactions of CagA with multiple host cell receptors in the gastric epithelium, including integrin-β1, EGFR, c-Met, CD44, E-cadherin, and gp130. The contribution of these interactions to H. pylori colonization, signal transduction, and gastric pathogenesis is discussed. Full article
(This article belongs to the Special Issue H. pylori Virulence Factors in the Induction of Gastric Cancer)
Show Figures

Figure 1

Back to TopTop