Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = micro-thermal conductivity detector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7733 KiB  
Review
Micro-Electro-Mechanical Systems-Based Devices for Determining Natural Gas Calorific Value and Measuring H2 Content in Hydrogenated Gaseous Fuels
by Pawel Knapkiewicz
Energies 2025, 18(4), 971; https://doi.org/10.3390/en18040971 - 18 Feb 2025
Viewed by 2332
Abstract
This article presents advancements in using Micro-Electro-Mechanical Systemsbased (MEMS-based) devices for measuring the calorific value and hydrogen content in hydrogenated gaseous fuels, such as natural gas. As hydrogen emerges as a pivotal clean energy source, blending it with natural gas becomes essential for [...] Read more.
This article presents advancements in using Micro-Electro-Mechanical Systemsbased (MEMS-based) devices for measuring the calorific value and hydrogen content in hydrogenated gaseous fuels, such as natural gas. As hydrogen emerges as a pivotal clean energy source, blending it with natural gas becomes essential for a sustainable energy transition. However, precise monitoring of hydrogen concentrations in gas distribution networks is crucial to ensure safety and reliability. Traditional methods like gas chromatography and mass spectrometry, while accurate, are often too complex and costly for real-time applications. In contrast, MEMS technology offers innovative, cost-effective alternatives that exhibit miniaturization, ease of installation, and rapid measurement capabilities. The article discusses the development of a novel MEMS thermal conductivity detector (TCD) and a new ionization spectrometer with an optical readout, both of which enable accurate assessment of hydrogen content and calorific values in natural gas. The TCD has demonstrated a 3% uncertainty in calorific value measurement and an impressive accuracy in determining hydrogen concentrations ranging from 2% to 25%. The research detailed in this article highlights the feasibility of integrating these MEMS devices into existing infrastructure, paving the way for efficient hydrogen monitoring in real-world applications. Moreover, preliminary findings reveal the potential for robust online process control, positioning MEMS technology as a transformative solution in the future of energy measurement. The ongoing innovations could significantly impact residential heating, industrial processes, and broader energy management strategies, facilitating a sustainable transition to hydrogen-enriched energy systems. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

18 pages, 4258 KiB  
Article
Thermalization of Mesh Reinforced Ultra-Thin Al-Coated Plastic Films: A Parametric Study Applied to the Athena X-IFU Instrument
by Nicola Montinaro, Luisa Sciortino, Fabio D’Anca, Ugo Lo Cicero, Enrico Bozzo, Stéphane Paltani, Michela Todaro and Marco Barbera
Sensors 2024, 24(7), 2360; https://doi.org/10.3390/s24072360 - 8 Apr 2024
Viewed by 1331
Abstract
The X-ray Integral Field Unit (X-IFU) is one of the two focal plane detectors of Athena, a large-class high energy astrophysics space mission approved by ESA in the Cosmic Vision 2015–2025 Science Program. The X-IFU consists of a large array of transition edge [...] Read more.
The X-ray Integral Field Unit (X-IFU) is one of the two focal plane detectors of Athena, a large-class high energy astrophysics space mission approved by ESA in the Cosmic Vision 2015–2025 Science Program. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that operate at ~100 mK inside a sophisticated cryostat. To prevent molecular contamination and to minimize photon shot noise on the sensitive X-IFU cryogenic detector array, a set of thermal filters (THFs) operating at different temperatures are needed. Since contamination already occurs below 300 K, the outer and more exposed THF must be kept at a higher temperature. To meet the low energy effective area requirements, the THFs are to be made of a thin polyimide film (45 nm) coated in aluminum (30 nm) and supported by a metallic mesh. Due to the small thickness and the low thermal conductance of the material, the membranes are prone to developing a radial temperature gradient due to radiative coupling with the environment. Considering the fragility of the membrane and the high reflectivity in IR energy domain, temperature measurements are difficult. In this work, a parametric numerical study is performed to retrieve the radial temperature profile of the larger and outer THF of the Athena X-IFU using a Finite Element Model approach. The effects on the radial temperature profile of different design parameters and boundary conditions are considered: (i) the mesh design and material, (ii) the plating material, (iii) the addition of a thick Y-cross applied over the mesh, (iv) an active heating heat flux injected on the center and (v) a Joule heating of the mesh. The outcomes of this study have guided the choice of the baseline strategy for the heating of the Athena X-IFU THFs, fulfilling the stringent thermal specifications of the instrument. Full article
Show Figures

Figure 1

10 pages, 6981 KiB  
Article
A Thermopile Detector Based on Micro-Bridges for Heat Transfer
by Na Zhou, Xuefeng Ding, Hongbo Li, Yue Ni, Yonglong Pu and Haiyang Mao
Micromachines 2021, 12(12), 1554; https://doi.org/10.3390/mi12121554 - 13 Dec 2021
Cited by 5 | Viewed by 3041
Abstract
A thermopile detector with their thermocouples distributed in micro-bridges is designed and investigated in this work. The thermopile detector consists of 16 pairs of n-poly-Si/p-poly-Si thermocouples, which are fabricated using a low-cost, high-throughput CMOS process. The micro-bridges are realized by forming micro trenches [...] Read more.
A thermopile detector with their thermocouples distributed in micro-bridges is designed and investigated in this work. The thermopile detector consists of 16 pairs of n-poly-Si/p-poly-Si thermocouples, which are fabricated using a low-cost, high-throughput CMOS process. The micro-bridges are realized by forming micro trenches at the front side first and then releasing the silicon substrate at the back side. Compared with a thermopile device using a continuous membrane, the micro-bridge-based one can achieve an improvement of the output voltage by 13.8% due to a higher temperature difference between the hot and cold junctions as there is a decrease in thermal conduction loss in the partially hollowed structure. This technique provides an effective way for developing high-performance thermopile detectors and other thermal devices. Full article
Show Figures

Figure 1

9 pages, 3109 KiB  
Article
Fabrication of Thermal Conductivity Detector Based on MEMS for Monitoring Dissolved Gases in Power Transformer
by Tingliang Tan, Jianhai Sun, Tingting Chen, Xinxiao Zhang and Xiaofeng Zhu
Sensors 2020, 20(1), 106; https://doi.org/10.3390/s20010106 - 23 Dec 2019
Cited by 6 | Viewed by 7225
Abstract
In this work, a high sensitivity micro-thermal conductivity detector (μTCD) with four thermal conductivity cells was proposed. Compared with conventional TCD sensors, the thermal conductivity cell in this work was designed as a streamlined structure; the thermistors were supported by a strong cantilever [...] Read more.
In this work, a high sensitivity micro-thermal conductivity detector (μTCD) with four thermal conductivity cells was proposed. Compared with conventional TCD sensors, the thermal conductivity cell in this work was designed as a streamlined structure; the thermistors were supported by a strong cantilever beam and suspended in the center of the thermal conductivity cell, which was able to greatly reduce the dead volume of the thermal conductivity cell and the heat loss of the substrate, improving the detection sensitivity. The experimental results demonstrated that the μTCD shows good stability and high sensitivity, which could rapidly detect light gases with a detection limit of 10 ppm and a quantitative repeatability of less than 1.1%. Full article
(This article belongs to the Collection Modeling, Testing and Reliability Issues in MEMS Engineering)
Show Figures

Figure 1

Back to TopTop