Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = miRNA signature in HFpEF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7066 KB  
Review
miRNA-Orchestrated Fibroinflammatory Responses in Heart Failure with Preserved Ejection Fraction: Translational Opportunities for Precision Medicine
by Maria Andreea Micu, Dan Alexandru Cozac and Alina Scridon
Diagnostics 2025, 15(18), 2286; https://doi.org/10.3390/diagnostics15182286 - 9 Sep 2025
Cited by 3 | Viewed by 1138
Abstract
Heart failure with a preserved ejection fraction (HFpEF) accounts for nearly half of all heart failure cases. It continues to impose a significant global cardiovascular burden due to its rising prevalence, complex pathophysiology, and limited treatment options. The absence of effective disease-modifying therapies [...] Read more.
Heart failure with a preserved ejection fraction (HFpEF) accounts for nearly half of all heart failure cases. It continues to impose a significant global cardiovascular burden due to its rising prevalence, complex pathophysiology, and limited treatment options. The absence of effective disease-modifying therapies is primarily attributable to the complex and heterogeneous pathophysiology underlying HFpEF. The hallmark of HFpEF is systemic inflammation, mostly originating from extracardiac comorbidities, which initiates and sustains the process of myocardial fibrosis, resulting in diastolic dysfunction. Recent evidence has identified specific micro ribonucleic acids (miRNAs) as key regulatory molecules in this inflammation–fibrosis cascade. Particularly, miR-21 and miR-29 play a central role in modulating these pathological processes by regulating the post-transcriptional expression of genes involved in inflammation, cardiac fibrosis, and remodeling. The inflammation-fibrosis axis in HFpEF offers multiple therapeutic opportunities ranging from direct anti-fibrotic strategies to the modulation of inflammation and fibrosis-related miRNA signatures. Such targeted approaches, especially miRNA modulation, hold potential to disrupt fundamental molecular mechanisms driving disease progression, moving beyond conventional HFpEF management. This narrative review explores the roles of miRNAs in modulating inflammation and fibrosis in HFpEF, critically assesses their potential as diagnostic and prognostic biomarkers, and evaluates their therapeutic application. Given the urgent clinical need for efficient HFpEF treatment strategies, understanding miRNA-mediated regulation of the inflammation–fibrosis axis is essential for developing personalized, mechanism-based therapies for HFpEF that could fundamentally change the HFpEF management paradigm. Full article
(This article belongs to the Special Issue Biomarker-Guided Advances in Diagnostic Medicine)
Show Figures

Figure 1

14 pages, 2435 KB  
Article
Myocardial RNA Sequencing Reveals New Potential Therapeutic Targets in Heart Failure with Preserved Ejection Fraction
by José M. Inácio, Fernando Cristo, Miguel Pinheiro, Francisco Vasques-Nóvoa, Francisca Saraiva, Mafalda M. Nunes, Graça Rosas, Andreia Reis, Rita Coimbra, José Luís Oliveira, Gabriela Moura, Adelino Leite-Moreira and José António Belo
Biomedicines 2023, 11(8), 2131; https://doi.org/10.3390/biomedicines11082131 - 28 Jul 2023
Cited by 8 | Viewed by 3836
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a global health challenge, with limited therapies proven to enhance patient outcomes. This makes the elucidation of disease mechanisms and the identification of novel potential therapeutic targets a priority. Here, we performed RNA sequencing on [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) represents a global health challenge, with limited therapies proven to enhance patient outcomes. This makes the elucidation of disease mechanisms and the identification of novel potential therapeutic targets a priority. Here, we performed RNA sequencing on ventricular myocardial biopsies from patients with HFpEF, prospecting to discover distinctive transcriptomic signatures. A total of 306 differentially expressed mRNAs (DEG) and 152 differentially expressed microRNAs (DEM) were identified and enriched in several biological processes involved in HF. Moreover, by integrating mRNA and microRNA expression data, we identified five potentially novel miRNA–mRNA relationships in HFpEF: the upregulated hsa-miR-25-3p, hsa-miR-26a-5p, and has-miR4429, targeting HAPLN1; and NPPB mRNA, targeted by hsa-miR-26a-5p and miR-140-3p. Exploring the predicted miRNA–mRNA interactions experimentally, we demonstrated that overexpression of the distinct miRNAs leads to the downregulation of their target genes. Interestingly, we also observed that microRNA signatures display a higher discriminative power to distinguish HFpEF sub-groups over mRNA signatures. Our results offer new mechanistic clues, which can potentially translate into new HFpEF therapies. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Cardiovascular Disease 2.0)
Show Figures

Figure 1

22 pages, 4793 KB  
Article
Systems Biology in Chronic Heart Failure—Identification of Potential miRNA Regulators
by Alba Vilella-Figuerola, Alex Gallinat, Rafael Escate, Sònia Mirabet, Teresa Padró and Lina Badimon
Int. J. Mol. Sci. 2022, 23(23), 15226; https://doi.org/10.3390/ijms232315226 - 3 Dec 2022
Cited by 19 | Viewed by 3112
Abstract
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in [...] Read more.
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR. In silico analysis of predicted targets by STRING protein-protein interaction networks revealed eight cluster networks (involving seven of the identified miRNAs) enriched in pathways related to cell cycle, Ras, chemokine, PI3K-AKT and TGF-β signaling. By ROC curve analysis, combined probabilities of these seven miRNAs (let-7a-5p, miR-107, miR-125a-5p, miR-139-5p, miR-150-5p, miR-30b-5p and miR-342-3p; clusters 1–4 [C:1–4]), discriminated between HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), and ischaemic and non-ischaemic aetiology. A combination of miR-107, miR-139-5p and miR-150-5p, involved in clusters 5 and 7 (C:5+7), discriminated HFpEF from HFrEF. Pathway enrichment analysis of miRNAs present in C:1–4 (let-7a-5p, miR-125a-5p, miR-30b-5p and miR-342-3p) revealed pathways related to HF pathogenesis. In conclusion, we have identified a differential signature of down-regulated miRNAs in the plasma of HF patients and propose novel cellular mechanisms involved in cHF pathogenesis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop