Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = metalloradical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 32004 KiB  
Article
A Doublet State Palladium(I) N-Heterocyclic Carbene Complex as a Dopant and Stabilizer for Improved Photostability in Organic Solar Cells
by Aliah El Astal-Quirós, Valentina Carrarini, Francesca Zarotti, Atiq Ur Rahman, Agustí Lledós, Cristina G. Yebra, Ernesto de Jesús and Andrea Reale
Energies 2024, 17(15), 3787; https://doi.org/10.3390/en17153787 - 1 Aug 2024
Viewed by 1422
Abstract
The effect of doublet state metalloradical complex in a solar cell inside the common active layer poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PC60BM) is explored. In this work, it is demonstrated that the role of the bis-[1,3-bis-(2,6-diisopropylphenyl)-4,5-dichloroimidazol-2-ylidene]palladium(I) hexafluoridophosphate dopant, [Pd(IPrCl)2 [...] Read more.
The effect of doublet state metalloradical complex in a solar cell inside the common active layer poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PC60BM) is explored. In this work, it is demonstrated that the role of the bis-[1,3-bis-(2,6-diisopropylphenyl)-4,5-dichloroimidazol-2-ylidene]palladium(I) hexafluoridophosphate dopant, [Pd(IPrCl)2][PF6], is crucial because the presence of a stable unpaired electron in the molecule significantly improves the optoelectronic performance of the device. We f the optimal concentration of this molecule in the active layer and demonstrate that the presence of this additive in the active layer helps to significantly improve the morphology of the device. The improvements in optoelectronic and morphological parameters are associated with a remarkable increase in photocurrent generation due to more favorable mechanisms of charge separation at the donor/acceptor (D/A) interfaces of the active layer and reduced recombinations. Moreover, the presence of this additive improves the stability of the unencapsulated solar cell against photochemical degradation produced by sunlight. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

16 pages, 3477 KiB  
Article
Spontaneous Release of Metalloradicals and Coordinatively Unsaturated Species in Asymmetric Iridium Dimers to Promote C-N Bond Formation
by Tsun-Ren Chen, Yi-Sheng Chen, Chia-Ying Li, Yen-Hsing Lin and Yu-Tung Chen
Inorganics 2022, 10(12), 237; https://doi.org/10.3390/inorganics10120237 - 2 Dec 2022
Cited by 2 | Viewed by 1954
Abstract
An unusual iridium dimer 1, [(4-cpbo)Ir(μ-Cl)(μ-O)Ir(4-cpbo)] (4-cpbo = 4-chlorophenylbenzoxazolato-N,C2), was obtained by the oxidative addition of oxygen and reductive elimination of chlorine from a precursor [(4-cpbo)2Ir(μ-Cl)]2. This iridium dimer 1 has a metastable structure with an [...] Read more.
An unusual iridium dimer 1, [(4-cpbo)Ir(μ-Cl)(μ-O)Ir(4-cpbo)] (4-cpbo = 4-chlorophenylbenzoxazolato-N,C2), was obtained by the oxidative addition of oxygen and reductive elimination of chlorine from a precursor [(4-cpbo)2Ir(μ-Cl)]2. This iridium dimer 1 has a metastable structure with an asymmetric bridge, can spontaneously release metalloradicals and coordinatively unsaturated species in solution at room temperature, and exhibits high catalytic ability for synthetic applications. Full article
(This article belongs to the Special Issue Inorganics for Catalysts: Design, Synthesis and Applications)
Show Figures

Figure 1

16 pages, 5674 KiB  
Article
Porphyrin Cobalt(III) “Nitrene Radical” Reactivity; Hydrogen Atom Transfer from Ortho-YH Substituents to the Nitrene Moiety of Cobalt-Bound Aryl Nitrene Intermediates (Y = O, NH)
by Monalisa Goswami, Christophe Rebreyend and Bas De Bruin
Molecules 2016, 21(2), 242; https://doi.org/10.3390/molecules21020242 - 20 Feb 2016
Cited by 21 | Viewed by 11151
Abstract
In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from [...] Read more.
In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from the OH or NH2 group in the ortho-position to the nitrene moiety of the key radical-intermediate was observed. This leads to formation of reactive ortho-iminoquinonoid (Y = O) and phenylene diimine (Y = NH) species. These intermediates convert to subsequent products in non-catalyzed reactions, as is typical for these free organic compounds. As such, the observed reactions prevent the anticipated cobalt-mediated catalytic radical-type coupling of the nitrene radical intermediates to alkynes or alkenes. Nonetheless, the observed reactions provide valuable insights into the reactivity of transition metal nitrene-radical intermediates, and give access to ortho-iminoquinonoid and phenylene diimine intermediates from ortho-YH substituted aryl azides in a catalytic manner. The latter can be employed as intermediates in one-pot catalytic transformations. From the ortho-hydroxy aryl azide substrates both phenoxizinones and benzoxazines could be synthesized in high yields. From the ortho-amino aryl azide substrates azabenzene compounds were obtained as the main products. Computational studies support these observations, and reveal that HAT from the neighboring OH and NH2 moiety to the nitrene radical moiety has a low energy barrier. Full article
(This article belongs to the Special Issue Organic Azides)
Show Figures

Graphical abstract

Back to TopTop