Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = metal-saturated mantle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6968 KiB  
Article
Mineralogy and Geochemistry of Jasperoid Veins in Neoproterozoic Metavolcanics: Evidence of Silicification, Pyritization and Hematization
by Mohamed Zaki Khedr, Mahmoud A. Sayed, Shehata Ali, Mokhles K. Azer, Yuji Ichiyama, Eiichi Takazawa, Ali Y. Kahal, Kamal Abdelrahman and Ali M. Mahdi
Minerals 2024, 14(7), 647; https://doi.org/10.3390/min14070647 - 25 Jun 2024
Cited by 1 | Viewed by 1975
Abstract
The Wadi Ranga sulfidic jasperoids in the Southern Eastern Desert (SED) of Egypt are hosted within the Neoproterozoic Shadli metavolcanics as an important juvenile crustal section of the Arabian Nubian Shield (ANS). This study deals with remote sensing and geochemical data to understand [...] Read more.
The Wadi Ranga sulfidic jasperoids in the Southern Eastern Desert (SED) of Egypt are hosted within the Neoproterozoic Shadli metavolcanics as an important juvenile crustal section of the Arabian Nubian Shield (ANS). This study deals with remote sensing and geochemical data to understand the mechanism and source of pyritization, silicification, and hematization in the host metavolcanics and to shed light on the genesis of their jasperoids. The host rocks are mainly dacitic to rhyolitic metatuffs, which are proximal to volcanic vents. They show peraluminous calc-alkaline affinity. These felsic metatuffs also exhibit a nearly flat REE pattern with slight LREE enrichment (La/Yb = 1.19–1.25) that has a nearly negative Eu anomaly (Eu/Eu* = 0.708–0.776), while their spider patterns display enrichment in Ba, K, and Pb and depletion in Nb, Ta, P, and Ti, reflecting the role of slab-derived fluid metasomatism during their formation in the island arc setting. The ratios of La/Yb (1.19–1.25) and La/Gd (1.0–1.17) of the studied felsic metatuffs are similar to those of the primitive mantle, suggesting their generation from fractionated melts that were derived from a depleted mantle source. Their Nb and Ti negative anomalies, along with the positive anomalies at Pb, K, Rb, and Ba, are attributed to the influence of fluids/melt derived from the subducted slab. The Wadi Ranga jasperoids are mainly composed of SiO2 (89.73–90.35 wt.%) and show wide ranges of Fe2O3t (2.73–6.63 wt.%) attributed to the significant amount of pyrite (up to 10 vol.%), hematite, goethite, and magnetite. They are also rich in some base metals (Cu + Pb + Zn = 58.32–240.68 ppm), leading to sulfidic jasperoids. Pyrite crystals with a minor concentration of Ag (up to 0.32 wt.%) are partially to completely converted to secondary hematite and goethite, giving the red ochre and forming hematization. Euhedral cubic pyrite is of magmatic origin and was formed in the early stages and accumulated in jasperoid by epigenetic Si-rich magmatic-derived hydrothermal fluids; pyritization is considered a magmatic–hydrothermal stage, followed by silicification and then hematization as post-magmatic stages. The euhedral apatite crystals in jasperoid are used to estimate the saturation temperature of their crystallization from the melt at about 850 °C. The chondrite (C1)-normalized REE pattern of the jasperoids shows slightly U–shaped patterns with a slightly negative Eu anomaly (Eu/Eu* = 0.43–0.98) due to slab-derived fluid metasomatism during their origin; these jasperoids are also rich in LILEs (e.g., K, Pb, and Sr) and depleted in HFSEs (e.g., Nb and Ta), reflecting their hydrothermal origin in the island arc tectonic setting. The source of silica in the studied jasperoids is likely derived from the felsic dyke and a nearby volcanic vent, where the resultant Si-rich fluids may circulate along the NW–SE, NE–SW, and E–W major faults and shear zones in the surrounding metavolcanics to leach Fe, S, and Si to form hydrothermal jasperoid lenses and veins. Full article
Show Figures

Figure 1

24 pages, 12991 KiB  
Article
Petrogenesis and Geodynamic Evolution of A-Type Granite Bearing Rare Metals Mineralization in Egypt: Insights from Geochemistry and Mineral Chemistry
by Mohamed M. Ghoneim, Ahmed E. Abdel Gawad, Hanaa A. El-Dokouny, Maher Dawoud, Elena G. Panova, Mai A. El-Lithy and Abdelhalim S. Mahmoud
Minerals 2024, 14(6), 583; https://doi.org/10.3390/min14060583 - 31 May 2024
Cited by 6 | Viewed by 2051
Abstract
During the Late Precambrian, the North Eastern Desert of Egypt underwent significant crustal evolution in a tectonic environment characterized by strong extension. The Neoproterozoic alkali feldspar granite found in the Homret El Gergab area is a part of the Arabian Nubian Shield and [...] Read more.
During the Late Precambrian, the North Eastern Desert of Egypt underwent significant crustal evolution in a tectonic environment characterized by strong extension. The Neoproterozoic alkali feldspar granite found in the Homret El Gergab area is a part of the Arabian Nubian Shield and hosts significant rare metal mineralization, including thorite, uranothorite, columbite, zircon, monazite, and xenotime, as well as pyrite, rutile, and ilmenite. The geochemical characteristics of the investigated granite reveal highly fractionated peraluminous, calc–alkaline affinity, A-type granite, and post-collision geochemical signatures, which are emplaced under an extensional regime of within-plate environments. It has elevated concentrations of Rb, Zr, Ba, Y, Nb, Th, and U. The zircon saturation temperature ranges from 753 °C to 766 °C. The formation of alkali feldspar rare metal granite was affected by extreme fractionation and fluid interactions at shallow crustal levels. The continental crust underwent extension, causing the mantle and crust to rise, stretch, and become thinner. This process allows basaltic magma from the mantle to be injected into the continental crust. Heat and volatiles were transferred from these basaltic bodies to the lower continental crust. This process enriched and partially melted the materials in the lower crust. The intrusion of basaltic magma from the mantle into the lower crust led to the formation of A-type granite. Full article
Show Figures

Figure 1

33 pages, 20526 KiB  
Article
Genesis of Rare Metal Granites in the Nubian Shield: Tectonic Control and Magmatic and Metasomatic Processes
by Mohamed Zaki Khedr, Saif M. Abo Khashaba, Eiichi Takazawa, Safaa M. Hassan, Mokhles K. Azer, N. H. El-Shibiny, Kamal Abdelrahman and Yuji Ichiyama
Minerals 2024, 14(5), 522; https://doi.org/10.3390/min14050522 - 17 May 2024
Cited by 9 | Viewed by 2172
Abstract
The Igla Ahmr region in the Central Eastern Desert (CED) of Egypt comprises mainly syenogranites and alkali feldspar granites, with a few tonalite xenoliths. The mineral potential maps were presented in order to convert the concentrations of total rare earth elements (REEs) and [...] Read more.
The Igla Ahmr region in the Central Eastern Desert (CED) of Egypt comprises mainly syenogranites and alkali feldspar granites, with a few tonalite xenoliths. The mineral potential maps were presented in order to convert the concentrations of total rare earth elements (REEs) and associated elements such as Zr, Nb, Ga, Y, Sc, Ta, Mo, U, and Th into mappable exploration criteria based on the line density, five alteration indices, random forest (RF) machine learning, and the weighted sum model (WSM). According to petrography and geochemical analysis, random forest (RF) gives the best result and represents new locations for rare metal mineralization compared with the WSM. The studied tonalites resemble I-type granites and were crystallized from mantle-derived magmas that were contaminated by crustal materials via assimilation, while the alkali feldspar granites and syenogranites are peraluminous A-type granites. The tonalites are the old phase and are considered a transitional stage from I-type to A-type, whereas the A-type granites have evolved from the I-type ones. Their calculated zircon saturation temperature TZr ranges from 717 °C to 820 °C at pressure < 4 kbar and depth < 14 km in relatively oxidized conditions. The A-type granites have high SiO2 (71.46–77.22 wt.%), high total alkali (up to 9 wt.%), Zr (up to 482 ppm), FeOt/(FeOt + MgO) ratios > 0.86, A/CNK ratios > 1, Al2O3 + CaO < 15 wt.%, and high ΣREEs (230 ppm), but low CaO and MgO and negative Eu anomalies (Eu/Eu* = 0.24–0.43). These chemical features resemble those of post-collisional rare metal A-type granites in the Arabian-Nubian Shield (ANS). The parent magma of these A-type granites was possibly derived from the partial melting of the I-type tonalitic protolith during lithospheric delamination, followed by severe fractional crystallization in the upper crust in the post-collisional setting. Their rare metal-bearing minerals, including zircon, apatite, titanite, and rutile, are of magmatic origin, while allanite, xenotime, parisite, and betafite are hydrothermal in origin. The rare metal mineralization in the Igla Ahmr granites is possibly attributed to: (1) essential components of both parental peraluminous melts and magmatic-emanated fluids that have caused metasomatism, leading to rare metal enrichment in the Igla Ahmr granites during the interaction between rocks and fluids, and (2) structural control of rare metals by the major NW–SE structures (Najd trend) and conjugate N–S and NE–SW faults, which all are channels for hydrothermal fluids that in turn have led to hydrothermal alteration. This explains why rare metal mineralization in granites is affected by hydrothermal alteration, including silicification, phyllic alteration, sericitization, kaolinitization, and chloritization. Full article
Show Figures

Figure 1

20 pages, 9894 KiB  
Article
Neoproterozoic Aksu Diabase Dyke, Chinese South Tianshan: Magma Sources and Implications for Regional Gold Metallogeny
by Guoxiong Ma, Xiaobo Zhao, Chunji Xue and Renke Wang
Minerals 2023, 13(3), 326; https://doi.org/10.3390/min13030326 - 25 Feb 2023
Cited by 2 | Viewed by 2563
Abstract
Tianshan is one of the world’s largest gold provinces; however, the relationship between gold mineralization and metasomatized subcontinental lithospheric mantle (SCLM) remains poorly understood. To improve our understanding, we present new bulk-rock geochemistry and platinum group element (PGE) concentrations of the SCLM-sourced Aksu [...] Read more.
Tianshan is one of the world’s largest gold provinces; however, the relationship between gold mineralization and metasomatized subcontinental lithospheric mantle (SCLM) remains poorly understood. To improve our understanding, we present new bulk-rock geochemistry and platinum group element (PGE) concentrations of the SCLM-sourced Aksu Neoproterozoic diabase dykes in Chinese South Tianshan. These data, combined with in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of hydrothermal pyrite grains in the diabase dykes, are used to discuss the SCLM source characteristics in the region and their potential links to formation of gold deposits. The diabase dykes exhibit high Th/Yb (0.47–0.62) and low Nb/U (13.4–16.3) ratios, indicating that magma evolution involves subduction-related fluid metasomatism and limited contamination of the continental crust. This is consistent with little variation in whole-rock Pd/Zr, Cu/Zr, and Ni/MgO ratios, suggesting that no sulfide segregation was caused by crustal contamination and magma mixing. In addition, the diabase dykes show low PGE and Au contents, with high Cu/Pd (>105) and low Cu/Zr (<0.5) ratios, indicating that magmas were derived from low-degree partial melting of the SCLM under S-saturated conditions. Such source characteristics indicate residual sulfides and chalcophile elements (e.g., PGEs, Au, and Cu) were concentrated at the SCLM reservoir in South Tianshan. Hydrothermal pyrite in the studied dykes has similar Au/Ag ratios and trace element distribution patterns to gold-bearing pyrite of lode gold deposits in Chinese South Tianshan, indicating that metasomatized SCLM may have contributed ore metals during the formation of these gold deposits. Adding to the available data, our study highlights that the SCLM may be a potential metal source reservoir, and it may have contributed to formation of the lode gold deposits in Chinese South Tianshan. Full article
Show Figures

Figure 1

25 pages, 6738 KiB  
Article
Geochemistry, Geochronology, and Prospecting Potential of the Dahongliutan Pluton, Western Kunlun Orogen
by Bing Zhou, Zhixue Zhang, Zeming Shi, Hao Song and Linsong Yu
Appl. Sci. 2022, 12(22), 11591; https://doi.org/10.3390/app122211591 - 15 Nov 2022
Cited by 3 | Viewed by 1888
Abstract
Triassic granitoids are abundant on the northwestern margin of the Tibetan Plateau. The Dahongliutan pluton, located in the eastern Western Kunlun orogen, formed in the Late Triassic.Previous field studies have identified potential mixing of crustal and mantle magmas. In this study, we used [...] Read more.
Triassic granitoids are abundant on the northwestern margin of the Tibetan Plateau. The Dahongliutan pluton, located in the eastern Western Kunlun orogen, formed in the Late Triassic.Previous field studies have identified potential mixing of crustal and mantle magmas. In this study, we used zircon U–Pb ages and major and trace elemental analyses to investigate the tectonic evolution of the pluton, and to determine whether any exchange of mantle-derived material occurred between the pluton and the source area. We found that the pluton has relatively high SiO2 contents, and the aluminum saturation index is consistent with peraluminous high-K calc-alkaline granite. The pluton is enriched in light rare earth elements; both light and heavy rare earth elements are highly fractionated. The magma that formed the pluton was predominantly derived from the crust; however, a small amount of upper mantle material was involved in the early stages of magma formation. The pluton underwent composite emplacement as a result of tectonic extension and magmatic emplacement, which may have occurred in the late Triassic post-collisional orogenic stage. Late Triassic magmatism provided heat and ore-forming material for Pb–Zn, Cu, Fe, and rare metal mineralization, which is of considerable importance for geological prospecting. Full article
(This article belongs to the Special Issue New Advances and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

60 pages, 10119 KiB  
Review
Adakites, High-Nb Basalts and Copper–Gold Deposits in Magmatic Arcs and Collisional Orogens: An Overview
by Pavel Kepezhinskas, Nikolai Berdnikov, Nikita Kepezhinskas and Natalia Konovalova
Geosciences 2022, 12(1), 29; https://doi.org/10.3390/geosciences12010029 - 7 Jan 2022
Cited by 31 | Viewed by 6572
Abstract
Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites [...] Read more.
Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites were found in arc segments associated with oblique, slow and flat subduction, arc–transform intersections, collision zones and post-collisional extensional environments. New models of adakite petrogenesis include the melting of thickened and delaminated mafic lower crust, basalt underplating of the continental crust and high-pressure fractionation (amphibole ± garnet) of mantle-derived, hydrous mafic melts. In some cases, adakites are associated with Nb-enriched (10 ppm < Nb < 20 ppm) and high-Nb (Nb > 20 ppm) arc basalts in ancient and modern subduction zones (HNBs). Two types of HNBs are recognized on the basis of their geochemistry. Type I HNBs (Kamchatka, Honduras) share N-MORB-like isotopic and OIB-like trace element characteristics and most probably originate from adakite-contaminated mantle sources. Type II HNBs (Sulu arc, Jamaica) display high-field strength element enrichments in respect to island-arc basalts coupled with enriched, OIB-like isotopic signatures, suggesting derivation from asthenospheric mantle sources in arcs. Adakites and, to a lesser extent, HNBs are associated with Cu–Au porphyry and epithermal deposits in Cenozoic magmatic arcs (Kamchatka, Phlippines, Indonesia, Andean margin) and Paleozoic-Mesozoic (Central Asian and Tethyan) collisional orogens. This association is believed to be not just temporal and structural but also genetic due to the hydrous (common presence of amphibole and biotite), highly oxidized (>ΔFMQ > +2) and S-rich (anhydrite in modern Pinatubo and El Chichon adakite eruptions) nature of adakite magmas. Cretaceous adakites from the Stanovoy Suture Zone in Far East Russia contain Cu–Ag–Au and Cu–Zn–Mo–Ag alloys, native Au and Pt, cupriferous Ag in association witn barite and Ag-chloride. Stanovoy adakites also have systematically higher Au contents in comparison with volcanic arc magmas, suggesting that ore-forming hydrothermal fluids responsible for Cu–Au(Mo–Ag) porphyry and epithermal mineralization in upper crustal environments could have been exsolved from metal-saturated, H2O–S–Cl-rich adakite magmas. The interaction between depleted mantle peridotites and metal-rich adakites appears to be capable of producing (under a certain set of conditions) fertile sources for HNB melts connected with some epithermal Au (Porgera) and porphyry Cu–Au–Mo (Tibet, Iran) mineralized systems in modern and ancient subduction zones. Full article
Show Figures

Figure 1

15 pages, 5246 KiB  
Article
Nitrogen under Super-Reducing Conditions: Ti Oxynitride Melts in Xenolithic Corundum Aggregates from Mt Carmel (N. Israel)
by William L. Griffin, Sarah E. M. Gain, Martin Saunders, Olivier Alard, Jeremy Shaw, Vered Toledo and Suzanne Y. O’Reilly
Minerals 2021, 11(7), 780; https://doi.org/10.3390/min11070780 - 18 Jul 2021
Cited by 7 | Viewed by 2925
Abstract
Titanium oxynitrides (Ti(N,O,C)) are abundant in xenolithic corundum aggregates in pyroclastic ejecta of Cretaceous volcanoes on Mount Carmel, northern Israel. Petrographic observations indicate that most of these nitrides existed as melts, immiscible with coexisting silicate and Fe-Ti-C silicide melts; some nitrides may also [...] Read more.
Titanium oxynitrides (Ti(N,O,C)) are abundant in xenolithic corundum aggregates in pyroclastic ejecta of Cretaceous volcanoes on Mount Carmel, northern Israel. Petrographic observations indicate that most of these nitrides existed as melts, immiscible with coexisting silicate and Fe-Ti-C silicide melts; some nitrides may also have crystallized directly from the silicide melts. The TiN phase shows a wide range of solid solution, taking up 0–10 wt% carbon and 1.7–17 wt% oxygen; these have crystallized in the halite (fcc) structure common to synthetic and natural TiN. Nitrides coexisting with silicide melts have higher C/O than those coexisting with silicate melts. Analyses with no carbon fall along the TiN–TiO join in the Ti–N–O phase space, implying that their Ti is a mixture of Ti3+ and Ti2+, while those with 1–3 at.% C appear to be solid solutions between TiN and Ti0.75O. Analyses with >10 at% C have higher Ti2+/Ti3+, reflecting a decrease in fO2. Oxygen fugacity was 6 to 8 log units below the iron–wüstite buffer, at or below the Ti2O3–TiO buffer. These relationships and coexisting silicide phases indicate temperatures of 1400–1100 °C. Ti oxynitrides are probably locally abundant in the upper mantle, especially in the presence of CH4–H2 fluids derived from the deeper metal-saturated mantle. Full article
(This article belongs to the Special Issue 10th Anniversary of Minerals: Frontiers of Mineral Science)
Show Figures

Figure 1

15 pages, 20978 KiB  
Article
Phase Relations in the FeO-Fe3C-Fe3N System at 7.8 GPa and 1350 °C: Implications for Oxidation of Native Iron at 250 km
by Aleksei N. Kruk, Alexander G. Sokol, Yurii V. Seryotkin and Yuri N. Palyanov
Minerals 2020, 10(11), 984; https://doi.org/10.3390/min10110984 - 4 Nov 2020
Cited by 2 | Viewed by 3644
Abstract
Oxidation of native iron in the mantle at a depth about 250 km and its influence on the stability of main carbon and nitrogen hosts have been reconstructed from the isothermal section of the ternary phase diagram for the FeO-Fe3C-Fe3 [...] Read more.
Oxidation of native iron in the mantle at a depth about 250 km and its influence on the stability of main carbon and nitrogen hosts have been reconstructed from the isothermal section of the ternary phase diagram for the FeO-Fe3C-Fe3N system. The results of experiments at 7.8 GPa and 1350 °C show that oxygen increase in the system to > 0.5 wt % provides the stability of FeO and leads to changes in the phase diagram: the Fe3C, L, and Fe3N single-phase fields change to two-phase ones, while the Fe3C + L and Fe3N + L two-phase fields become three-phase. Сarbon in iron carbide (Fe3C, space group Pnma) is slightly below the ideal value and nitrogen is below the EMPA (Electron microprobe analysis) detection limit. Iron nitride (ε-Fe3N, space group P63/mmc) contains up to 2.7 wt % С and 4.4 wt % N in equilibrium with both melt and wüstite but 2.1 wt % С and 5.4 wt % N when equilibrated with wüstite alone. Impurities in wüstite (space group Fmm) are within the EMPA detection limit. The contents of oxygen, carbon, and nitrogen in the metal melt equilibrated with different iron compounds are within 0.5–0.8 wt % O even in FeO-rich samples; 3.8 wt % C and 1.2 wt % N for Fe3C + FeO; and 2.9 wt % C and 3.5 wt % N for Fe3N + FeO. Co-crystallization of Fe3C and Fe3N from the O-bearing metal melt is impossible because the fields of associated C- and N-rich compounds are separated by that of FeO + L. Additional experiments with excess oxygen added to the system show that metal melt, which is the main host of carbon and nitrogen in the metal-saturated (~0.1 wt %) mantle at a depth of ~250 km and a normal heat flux of 40 mW/m2, has the greatest oxygen affinity. Its partial oxidation produces FeO and causes crystallization of iron carbides (Fe3C and Fe7C3) and increases the nitrogen enrichment of the residual melt. Thus, the oxidation of metal melt in the mantle enriched in volatiles may lead to successive crystallization of iron carbides and nitrides. In these conditions, magnetite remains unstable till complete oxidation of iron carbide, iron nitride, and the melt. Iron carbides and nitrides discovered as inclusions in mantle diamonds may result from partial oxidation of metal melt which originally contained relatively low concentrations of carbon and nitrogen. Full article
Show Figures

Figure 1

18 pages, 2847 KiB  
Article
Formation of Hydrocarbons in the Presence of Native Iron under Upper Mantle Conditions: Experimental Constraints
by Alexander Sokol, Anatoly Tomilenko, Ivan Sokol, Pavel Zaikin and Taras Bul’bak
Minerals 2020, 10(2), 88; https://doi.org/10.3390/min10020088 - 21 Jan 2020
Cited by 3 | Viewed by 3036
Abstract
The formation of hydrocarbons (HCs) upon interaction of metal and metal–carbon phases (solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys) with or without additional sources of carbon (graphite, diamond, carbonate, and H2O–CO2 fluids) [...] Read more.
The formation of hydrocarbons (HCs) upon interaction of metal and metal–carbon phases (solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys) with or without additional sources of carbon (graphite, diamond, carbonate, and H2O–CO2 fluids) was investigated in quenching experiments at 6.3 GPa and 1000–1400 °C, wherein hydrogen fugacity (fH2) was controlled by the Fe–FeO + H2O or Mo–MoO2 + H2O equilibria. The aim of the study was to investigate abiotic generation of hydrocarbons and to characterize the diversity of HC species that form in the presence of Fe/Ni metal phases at P–T–fH2 conditions typical of the upper mantle. The carbon donors were not fully depleted at experimental conditions. The ratio of H2 ingress and consumption rates depended on hydrogen permeability of the capsule material: runs with low-permeable Au capsules and/or high hydrogenation rates (H2O–CO2 fluid) yielded fluids equilibrated with the final assemblage of solid phases at fH2samplefH2buffer. The synthesized quenched fluids contained diverse HC species, predominantly light alkanes. The relative percentages of light alkane species were greater in higher temperature runs. At 1200 °C, light alkanes (C1 ≈ C2 > C3 > C4) formed either by direct hydrogenation of Fe3C or Fe7C3, or by hydrogenation of graphite/diamond in the presence of Fe3C, Fe7C3, and a liquid Fe–Ni alloy. The CH4/C2H6 ratio in the fluids decreased from 5 to 0.5 with decreasing iron activity and the C fraction increased in the series: Fe–Fe3C → Fe3C–Fe7C3 → Fe7C3–graphite → graphite. Fe3C–magnesite and Fe3C–H2O–CO2 systems at 1200 °C yielded magnesiowüstite and wüstite, respectively, and both produced C-enriched carbide Fe7C3 and mainly light alkanes (C1 ≈ C2 > C3 > C4). Thus, reactions of metal phases that simulate the composition of native iron with various carbon donors (graphite, diamond, carbonate, or H2O–CO2 fluid) at the upper mantle P–T conditions and enhanced fH2 can provide abiotic generation of complex hydrocarbon systems that predominantly contain light alkanes. The conditions favorable for HC formation exist in mantle zones, where slab-derived H2O-, CO2- and carbonate-bearing fluids interact with metal-saturated mantle. Full article
(This article belongs to the Special Issue Genesis of Hydrocarbons in the Upper Mantle)
Show Figures

Figure 1

25 pages, 11633 KiB  
Article
He-Ar Isotopes and Trace Gas Compositions of Fluid Inclusions in Massive Sulphides from the Yushui Copper-Polymetallic Deposit, South China: Metallogenic Implications
by Yi Huang, Zhongwei Wu, Xiaoming Sun, Yan Wang, Guiyong Shi, Wei Zhai and Yao Guan
Minerals 2019, 9(5), 258; https://doi.org/10.3390/min9050258 - 29 Apr 2019
Cited by 3 | Viewed by 4737
Abstract
The Yushui ore deposit, located in the middle section of the Yong’an-Meixian Hercynian depression, is a medium-sized Cu-polymetallic massive sulphide deposit in Eastern Guangdong Province, South China. This deposit is characterized by unusually high copper grade (up to 50–60 wt. % Cu). Other [...] Read more.
The Yushui ore deposit, located in the middle section of the Yong’an-Meixian Hercynian depression, is a medium-sized Cu-polymetallic massive sulphide deposit in Eastern Guangdong Province, South China. This deposit is characterized by unusually high copper grade (up to 50–60 wt. % Cu). Other metallic elements, such as lead, zinc and silver, are also economically important in the Yushui ore bodies. The aim of this study was to apply N2–Ar–He systematics, together with organic gases (light-hydrocarbon tracers), to constrain the origin and evolution of ore-forming fluids. The helium-argon isotopes and trace gas compositions of fluid inclusions trapped within metal sulphide minerals were measured for a number of bonanza ores from the Yushui deposit. The noble gas concentrations in the studied samples vary over one to two orders of magnitude (4He: 2.27–160.00 × 10−5 cm3 STP g−1; 3He: 0.53–34.88 × 10−12 cm3 STP g−1; 40Ar: 6.28–37.82 × 10−7 cm3 STP g−1; 36Ar: 1.25–10.40 × 10−9 cm3 STP g−1). Our data show a narrow range of 3He/4He ratios from 0.006 to 0.056 Ra (~0.026 Ra on average, n = 8), which are considerably lower than the modern atmospheric end-member value; whereas the 40Ar/36Ar ratios (ranging from 333.76 to 501.68, with an average of 397.53) are significantly greater than that of air-saturated water. Most of the bornite samples have somewhat higher 3He/4He ratios of trapped fluids when compared to chalcopyrite. Overall, these He-Ar results are well within the range of crustal reservoir, thus implying a predominantly crustal source (originated from Caledonian basement) for ore-forming solutions, with little contribution from mantle-derived fluids. Analysis of the N2–Ar–He composition in Cu-rich sulphides indicates that the Yushui ore-forming fluids were probably derived from formation water (or basinal hot brines). Moreover, organic gas species identified in sulphide-hosted fluid inclusions are mainly composed of C1–C4 alkanes, while the concentrations of unsaturated olefins and aromatic hydrocarbons are very low. In particular, most chalcopyrite samples with relatively low 3He/4He ratios (0.006–0.016 Ra) and 40Ar*/4He values (0.0002–0.0012) are generally characterized by very high CO2/CH4 ratios (~60–102). All these suggest that main-stage Cu-Ag metallogenic processes might have not been affected by high-temperature magmatic activities or superimposed by strong metamorphic overprinting, although some chalcopyrite-rich ores appear to be influenced by later stage hydrothermal processes. In summary, neither magmatic input nor convecting seawater has played an important role in the formation of Yushui copper-polymetallic deposit. The massive sulphide ore bodies were products of water–rock interaction between metal-bearing basinal brines and the host sedimentary strata. Full article
(This article belongs to the Special Issue Massive Sulfide Deposits all around the World)
Show Figures

Figure 1

22 pages, 1861 KiB  
Article
He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications
by Yan Wang, Zhongwei Wu, Xiaoming Sun, Xiguang Deng, Yao Guan, Li Xu, Yi Huang and Kaijun Cao
Minerals 2018, 8(11), 512; https://doi.org/10.3390/min8110512 - 7 Nov 2018
Cited by 5 | Viewed by 5821
Abstract
Noble gases have become a powerful tool to constrain the origin and evolution of ore-forming fluids in seafloor hydrothermal systems. The aim of this study was to apply these tracers to understand the genesis of newly discovered polymetallic sulphide deposits along the ultraslow-spreading [...] Read more.
Noble gases have become a powerful tool to constrain the origin and evolution of ore-forming fluids in seafloor hydrothermal systems. The aim of this study was to apply these tracers to understand the genesis of newly discovered polymetallic sulphide deposits along the ultraslow-spreading Southwest Indian Ridge (SWIR). The helium, argon, and sulphur isotope compositions of metal sulphide minerals were measured for a number of active/inactive vent fields in the Indian Ocean. The helium concentrations and isotopic ratios in these ore samples are variable (4He: 0.09–2.42 × 10−8 cm3STP∙g−1; 3He: 0.06–3.28 × 10−13 cm3STP∙g−1; 3He/4He: 1.12–9.67 Ra) and generally greater than the modern atmosphere, but significantly lower than those in massive sulphides from the fast-spreading East Pacific Rise (EPR), especially for three Cu–Fe-rich samples from the ultramafic-hosted Tianzuo and Kairei vent fields. On the contrary, most of the SWIR sulphide deposits have somewhat higher 40Ar/36Ar ratios of trapped fluids (ranging from 290.6 to 303.4) when compared to the EPR ore samples. Moreover, the majority of sulphide minerals from the Indian Ocean have much higher δ34S values (3.0‰–9.8‰, ~5.9 on average, n = 49) than other basaltic-hosted active hydrothermal systems on the EPR. Overall, these He–Ar–S results are well within the range of seafloor massive sulphide deposits at global sediment-starved mid-ocean ridges (MORs), lying between those of air-saturated water (ASW) and mid-ocean ridge basalt (MORB) end members. Therefore, our study suggests that the helium was derived mainly from the MORB mantle by degassing during the high-temperature stage of hydrothermal activity, as well as from a mixture of vent fluids with variable amounts of ambient seawater during either earlier or late-stage low-temperature hydrothermal episodes, whereas the argon in ore-forming fluids trapped within sulphide minerals was predominantly derived from deep-sea water. Additionally, relatively high δ34S values exhibit a great estimated proportion (up to nearly 40%) of seawater-derived components. In summary, sub-seafloor extensive fluid circulation, pervasive low-temperature alteration, shallow seawater entrainment, and mixing processes, may make a larger contribution to the SWIR hydrothermal ore-forming systems, compared to fast-spreading centres. Full article
(This article belongs to the Special Issue Deep-Sea Minerals and Gas Hydrates)
Show Figures

Figure 1

Back to TopTop