Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mesoporous carbon microbeads (MCMB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9251 KiB  
Article
Synergistic Integration of Mesocarbon Microbeads, Graphitic Nanofibers, and Mesoporous Carbon for Advanced Supercapacitor Electrodes
by Palanisamy Rajkumar, Vediyappan Thirumal, Kisoo Yoo and Jinho Kim
Crystals 2025, 15(1), 64; https://doi.org/10.3390/cryst15010064 - 10 Jan 2025
Cited by 1 | Viewed by 671
Abstract
In this study, a novel multiscale carbon architecture was developed by integrating mesocarbon microbeads (MCMBs), graphitic nanofibers (GNFs), and mesoporous carbon, aimed at enhancing the performance of symmetric supercapacitors. The unique combination of spherical MCMB particles, conductive GNF nanofibers, and mesoporous carbon sheets [...] Read more.
In this study, a novel multiscale carbon architecture was developed by integrating mesocarbon microbeads (MCMBs), graphitic nanofibers (GNFs), and mesoporous carbon, aimed at enhancing the performance of symmetric supercapacitors. The unique combination of spherical MCMB particles, conductive GNF nanofibers, and mesoporous carbon sheets resulted in a highly effective electrode material, offering improved conductivity, increased active sites for charge storage, and enhanced structural stability. The fabricated MCMB/GNF/MC architecture demonstrated a remarkable specific capacitance of 393 F g−1 at 1 A g−1 in a three-electrode system, significantly surpassing the performance of individual MCMBs and MCMB/GNF electrodes. Furthermore, the architecture was incorporated into a symmetric supercapacitor (SSC) device, where it achieved a capacitance of 86 F g−1 at 1 A g−1. The device exhibited excellent cycling stability, retaining 92% of its initial capacitance after 10,000 charge–discharge cycles, with an outstanding coulombic efficiency of 99%. At optimal operating conditions, the SSC device delivered an energy density of 11 Wh kg−1 at a power density of 500 W kg−1, making it a promising candidate for high-performance energy-storage applications. This multiscale carbon architecture represents a significant advancement in the design of electrode materials for symmetric supercapacitors, offering a balance of high energy and power density, long-term stability, and excellent scalability for practical applications. This work not only contributes to the development of high-performance electrode materials but also paves the way for scalable, long-lasting supercapacitors for future energy-storage technologies. Full article
Show Figures

Graphical abstract

14 pages, 4954 KiB  
Article
Enhanced Thermal Stability of Mesoporous Carbon Microbeads-Based Lithium-Ion Batteries by Propargyl Methacrylate as Electrolyte Additive
by Yu-Ruei Kung, Jing-Tang Su, Chiung-Cheng Huang, Yaoming Xiao and Jeng-Yu Lin
Polymers 2022, 14(21), 4491; https://doi.org/10.3390/polym14214491 - 24 Oct 2022
Cited by 2 | Viewed by 2383
Abstract
In this current work, propargyl methacrylate (PMA) was successfully adopted to be an efficient electrolyte additive to stabilize the formation of a solid electrolyte interface (SEI) layer on mesoporous carbon microbeads (MCMB) in Li-ion batteries, especially at elevated temperatures. According to a series [...] Read more.
In this current work, propargyl methacrylate (PMA) was successfully adopted to be an efficient electrolyte additive to stabilize the formation of a solid electrolyte interface (SEI) layer on mesoporous carbon microbeads (MCMB) in Li-ion batteries, especially at elevated temperatures. According to a series of material and electrochemical characterizations, the optimized concentration of PMA additive in the electrolyte was found to be 0.5 wt.%. The MCMB electrode cycled with the optimized 0.5 wt.% PMA-containing electrolyte exhibited impressive capacity retention of 90.3% after 50 cycles at 0.1C at elevated temperature, which was remarkably higher than that using the PMA-free electrolyte (83.5%). The improved electrochemical stability at elevated temperature could be ascribed to the rapid formation of stable and thin SEI layer on MCMB surface, which were investigated and suggested to be formed via PMA copolymerization reactions. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites II)
Show Figures

Figure 1

Back to TopTop