Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = memristor oscillatory networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3863 KiB  
Review
Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing
by Xiangjing Wang, Yixin Zhu, Zili Zhou, Xin Chen and Xiaojun Jia
Nanomaterials 2025, 15(14), 1130; https://doi.org/10.3390/nano15141130 - 21 Jul 2025
Viewed by 633
Abstract
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including [...] Read more.
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including oscillatory, leaky integrate-and-fire (LIF), Hodgkin–Huxley (H-H), and stochastic dynamics—and how these features enable compact, energy-efficient neuromorphic systems. We analyze the physical switching mechanisms of redox and Mott-type TSMs, discuss their voltage-dependent dynamics, and assess their suitability for spike generation. We review memristor-based neuron circuits regarding architectures, materials, and key performance metrics. At the system level, we summarize bio-inspired neuromorphic platforms integrating TSM neurons with visual, tactile, thermal, and olfactory sensors, achieving real-time edge computation with high accuracy and low power. Finally, we critically examine key challenges—such as stochastic switching origins, device variability, and endurance limits—and propose future directions toward reconfigurable, robust, and scalable memristive neuromorphic architectures. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

13 pages, 4463 KiB  
Article
The Coupled Reactance-Less Memristor Based Relaxation Oscillators for Binary Oscillator Networks
by Vladimir Rakitin, Sergey Rusakov and Sergey Ulyanov
Micromachines 2023, 14(2), 365; https://doi.org/10.3390/mi14020365 - 31 Jan 2023
Cited by 1 | Viewed by 1690
Abstract
This paper discusses the application of coupled reactance-less memristor-based oscillators (MBO) with binary output signals in oscillatory networks. A class of binary-coupled memristor oscillators provides simple integration with standard CMOS logic elements. Combining MBOs with binary logic elements ensures the operation of complex [...] Read more.
This paper discusses the application of coupled reactance-less memristor-based oscillators (MBO) with binary output signals in oscillatory networks. A class of binary-coupled memristor oscillators provides simple integration with standard CMOS logic elements. Combining MBOs with binary logic elements ensures the operation of complex information processing algorithms. The analysis of the simplest networks based on MBOs is performed. The typical reactance-less MBO with current and potential inputs is considered. The output responses for input control signals are analyzed. It is shown that the current input signal impacts primarily the rate of memristor resistance variation, while the potential input signal changes the thresholds. The exploit of the potential input for the synchronization of coupled MBOs and current control input in order to provide the necessary encoding of information is suggested. The example of the application of coupled MBOs in oscillatory networks is given, and results of simulation are presented. Full article
(This article belongs to the Special Issue Design Trends in RF/Microwave Filtering and Memristive Devices)
Show Figures

Figure 1

24 pages, 29826 KiB  
Review
Chemical Wave Computing from Labware to Electrical Systems
by Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, Vasileios Ntinas, Stavros Kitsios, Michail-Antisthenis Tsompanas, Panagiotis Bousoulas, Dimitris Tsoukalas, Andrew Adamatzky and Georgios Ch. Sirakoulis
Electronics 2022, 11(11), 1683; https://doi.org/10.3390/electronics11111683 - 25 May 2022
Cited by 7 | Viewed by 2664
Abstract
Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of [...] Read more.
Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of these systems and enable a more detailed investigation of their capacity. As expected, the computerized counterparts of the laboratory based experiments are faster and less expensive. A further step of acceleration in wave-based computing is the development of electrical circuits that imitate the dynamics of chemical computers. A key component of the electrical circuits is the memristor which facilitates the non-linear behavior of the chemical systems. As part of this concept, the road-map of the inspiration from wave-based computing on chemical media towards the implementation of equivalent systems on oscillating memristive circuits was studied here. For illustration reasons, the most straightforward example was demonstrated, namely the approximation of Boolean gates. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

30 pages, 18030 KiB  
Tutorial
Graph Coloring via Locally-Active Memristor Oscillatory Networks
by Alon Ascoli, Martin Weiher, Melanie Herzig, Stefan Slesazeck, Thomas Mikolajick and Ronald Tetzlaff
J. Low Power Electron. Appl. 2022, 12(2), 22; https://doi.org/10.3390/jlpea12020022 - 18 Apr 2022
Cited by 22 | Viewed by 4791
Abstract
This manuscript provides a comprehensive tutorial on the operating principles of a bio-inspired Cellular Nonlinear Network, leveraging the local activity of NbOx memristors to apply a spike-based computing paradigm, which is expected to deliver such a separation between the steady-state phases of [...] Read more.
This manuscript provides a comprehensive tutorial on the operating principles of a bio-inspired Cellular Nonlinear Network, leveraging the local activity of NbOx memristors to apply a spike-based computing paradigm, which is expected to deliver such a separation between the steady-state phases of its capacitively-coupled oscillators, relative to a reference cell, as to unveal the classification of the nodes of the associated graphs into the least number of groups, according to the rules of a non-deterministic polynomial-hard combinatorial optimization problem, known as vertex coloring. Besides providing the theoretical foundations of the bio-inspired signal-processing paradigm, implemented by the proposed Memristor Oscillatory Network, and presenting pedagogical examples, illustrating how the phase dynamics of the memristive computing engine enables to solve the graph coloring problem, the paper further presents strategies to compensate for an imbalance in the number of couplings per oscillator, to counteract the intrinsic variability observed in the electrical behaviours of memristor samples from the same batch, and to prevent the impasse appearing when the array attains a steady-state corresponding to a local minimum of the optimization goal. The proposed Memristor Cellular Nonlinear Network, endowed with ad hoc circuitry for the implementation of these control strategies, is found to classify the vertices of a wide set of graphs in a number of color groups lower than the cardinality of the set of colors identified by traditional either software or hardware competitor systems. Given that, under nominal operating conditions, a biological system, such as the brain, is naturally capable to optimise energy consumption in problem-solving activities, the capability of locally-active memristor nanotechnologies to enable the circuit implementation of bio-inspired signal processing paradigms is expected to pave the way toward electronics with higher time and energy efficiency than state-of-the-art purely-CMOS hardware. Full article
(This article belongs to the Special Issue Low Power Memory/Memristor Devices and Systems)
Show Figures

Figure 1

Back to TopTop