Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = medium-entropy austenitic super stainless steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3125 KiB  
Article
Tribocorrosion Behavior of a Medium-Entropy Austenitic Stainless Steel in 3.5 wt.% NaCl: A Comparative Study with 304 and S31254 Stainless Steels
by Chun-Hao Wang, Shih-Yen Huang, Yu-Ren Chu, Peng-Shu Hsu, Hung-Wei Yen, I-Chung Cheng, Peng-Wei Chu and Yueh-Lien Lee
Lubricants 2025, 13(6), 260; https://doi.org/10.3390/lubricants13060260 - 11 Jun 2025
Viewed by 508
Abstract
This study investigates the tribocorrosion behavior of 304 stainless steel (304SS), S31254 super austenitic stainless steel (S31254 SASS), and a medium-entropy austenitic stainless steel (MEASS) in 3.5 wt.% NaCl solution under sliding conditions. The objective is to clarify the performance differences among these [...] Read more.
This study investigates the tribocorrosion behavior of 304 stainless steel (304SS), S31254 super austenitic stainless steel (S31254 SASS), and a medium-entropy austenitic stainless steel (MEASS) in 3.5 wt.% NaCl solution under sliding conditions. The objective is to clarify the performance differences among these alloys when exposed to simultaneous mechanical wear and corrosion. Electrochemical techniques, including potentiodynamic polarization and potentiostatic sliding tests, were used to evaluate corrosion resistance and repassivation behavior. Quantitative analysis based on ASTM G119 revealed that MEASS showed a 68% lower total material loss compared to 304SS and a 55% lower loss compared to S31254. MEASS also exhibited the lowest corrosion current density (1.46 μA/cm2) under tribocorrosion conditions, representing an 83% reduction compared to 304SS. These improvements are attributed to the higher chromium and nickel contents of MEASS, which enhance passive film stability and reduce susceptibility to localized corrosion. The results demonstrate that MEASS offers superior resistance to combined mechanical and corrosive degradation in chloride-containing environments. Full article
(This article belongs to the Special Issue Tribology of Metals and Alloys)
Show Figures

Figure 1

17 pages, 10259 KiB  
Article
Tribocorrosion Behavior of Medium-Entropy Super Austenitic Stainless Steel in Acidic Environments
by Chia-Chi Liu, Shih-Yen Huang, Yu-Ren Chu, Tzu-Hsien Yang, Hung-Wei Yen, I-Chung Cheng, Peng-Wei Chu and Yueh-Lien Lee
Lubricants 2025, 13(3), 125; https://doi.org/10.3390/lubricants13030125 - 16 Mar 2025
Cited by 1 | Viewed by 1453
Abstract
Although extensive studies have examined the tribocorrosion behavior of stainless steels, the performance of medium-entropy austenitic super stainless steels (MEASS) under severe combined corrosion and mechanical wear conditions has not been fully established. This study systematically compares the tribocorrosion behavior of a newly [...] Read more.
Although extensive studies have examined the tribocorrosion behavior of stainless steels, the performance of medium-entropy austenitic super stainless steels (MEASS) under severe combined corrosion and mechanical wear conditions has not been fully established. This study systematically compares the tribocorrosion behavior of a newly developed MEASS with conventional S31254 super austenitic stainless steel (SASS) in a 1 M H2SO4 solution, aiming to explore innovative material designs for enhanced performance under these demanding conditions. Electrochemical tests were conducted under both open-circuit potential (OCP) and cathodic potential, with and without sliding wear, to assess the corrosion, wear, and synergistic effects influencing the tribocorrosion performance. Worn surface morphologies and hardness were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and hardness measurements, respectively. The experimental results revealed that MEASS exhibits a superior repassivation capability compared to S31254, with a 34.3% lower total material loss after 24 h of tribocorrosion test, primarily attributed to enhanced strain hardening and improved wear resistance. These findings emphasize the strong potential of MEASS for use in corrosive environments, particularly in chemical processing industries, where high resistance to wear and corrosion is critically required. Full article
(This article belongs to the Special Issue Tribology of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop