Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = medium molecular weight LLDPEs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3045 KiB  
Article
LLDPE-like Polymers Accessible via Ethylene Homopolymerization Using Nitro-Appended 2-(Arylimino)pyridine-nickel Catalysts
by Desalegn Demise Sage, Qiuyue Zhang, Ming Liu, Gregory A. Solan, Yang Sun and Wen-Hua Sun
Catalysts 2022, 12(9), 961; https://doi.org/10.3390/catal12090961 - 29 Aug 2022
Cited by 4 | Viewed by 2274
Abstract
Four examples of para-nitro substituted 2-(arylimino)pyridine-nickel(II) bromide complexes of general formula, [2-{(2,6-R-4-NO2C6H2)N=CMe}C5H4N]NiBr2, but differentiable by the steric/electronic properties displayed by the ortho-groups [R = i-Pr (Ni1), [...] Read more.
Four examples of para-nitro substituted 2-(arylimino)pyridine-nickel(II) bromide complexes of general formula, [2-{(2,6-R-4-NO2C6H2)N=CMe}C5H4N]NiBr2, but differentiable by the steric/electronic properties displayed by the ortho-groups [R = i-Pr (Ni1), Et (Ni2), CHPh2 (Ni3), CH(4-FPh)2 (Ni4)], have been prepared in good yield. For comparative purposes, the meta-nitro complex, [2-{(2,6-i-Pr2-3-NO2-4-(4-FPh)2C6H)N=CMe}C5H4N]NiBr2 (Ni5), has also been synthesized. The molecular structures of mononuclear Ni3·xH2O (x = 2, 3) and bromide-bridged dinuclear Ni4 and Ni5 are disclosed. Upon activation with either ethylaluminum dichloride (EtAlCl2) or modified methylaluminoxane (MMAO), all precatalysts displayed good catalytic performance at operating temperatures between 30 °C and 60 °C with higher activities generally seen using EtAlCl2 [up to 4.7 × 106 g PE (mol of Ni)−1 h−1]: Ni2 ~ Ni5 > Ni1 ~ Ni4 > Ni3. In terms of the resultant polyethylene (PE), Ni4/EtAlCl2 formed the highest molecular weight of the series (Mw up to 1.4 × 105 g mol−1) with dispersities (Mw/Mn) ranging from narrow to broad (Mw/Mn range: 2.2–24.4). Moreover, the melting temperatures (Tm) of the polymers generated via EtAlCl2 activation fell in a narrow range, 117.8–126.0 °C, which resembles that seen for industrial-grade linear-low density polyethylene (LLDPE). Indeed, their 13C NMR spectra revealed significant amounts of uniformly distributed long-chain branches (LCBs), while internal vinylene groups constituted the major type of chain unsaturation [vinylene:vinyl = 5.3:1 (EtAlCl2) and 9.9:1 (MMAO)]. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 1798 KiB  
Article
Ability of Trichoderma hamatum Isolated from Plastics-Polluted Environments to Attack Petroleum-Based, Synthetic Polymer Films
by Kateřina Malachová, Čeněk Novotný, Grażyna Adamus, Nadia Lotti, Zuzana Rybková, Michelina Soccio, Pavlína Šlosarčíková, Vincent Verney and Fabio Fava
Processes 2020, 8(4), 467; https://doi.org/10.3390/pr8040467 - 16 Apr 2020
Cited by 35 | Viewed by 5318
Abstract
Microorganisms colonizing plastic waste material collected in composting-, landfill-, and anaerobic digestion plants were isolated to obtain novel strains maximally adapted to the degradation of plastics due to long-term contact with plastic polymers. Twenty-six bacterial strains were isolated and identified by the 16 [...] Read more.
Microorganisms colonizing plastic waste material collected in composting-, landfill-, and anaerobic digestion plants were isolated to obtain novel strains maximally adapted to the degradation of plastics due to long-term contact with plastic polymers. Twenty-six bacterial strains were isolated and identified by the 16 S rRNA method, and eighteen strains of yeasts and fungi using 18 S rRNA and the internal transcribed spacer ITS sequencing of the 18 S rRNA gene. In selected strains, the ability to degrade linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), polystyrene (PS), and polyvinyl chloride (PVC) was tested in aerobic liquid-medium cultures. An oxidative, two-step pretreatment of LLDPE and LDPE using γ- or UV-irradiation followed by a high-temperature treatment was carried out, and the pretreated plastics were also included in the degradation experiments. The respective weight losses after biodegradation by Trichoderma hamatum were: virgin and γ/T90-pretreated LLDPE (2.2 ± 1.2 and 3.9 ± 0.5%), virgin and UV/T60-pretreated LDPE (0.5 ± 0.4 and 1.3 ± 0.4%), and virgin PS (0.9 ± 0.4%). The Fourier transform infrared spectroscopy (FTIR) analysis showed that during the treatment of pretreated LLDPE, T. hamatum attacked low molecular weight LLDPE oligomers, reducing the functional groups (carbonyl C = O), which was paralleled by a slight increase of the molar mass of pretreated LLDPE and a decrease of the dispersity index, as demonstrated by gel permeation chromatography (GPC). Thermogravimetric analysis (TGA) highlighted the formation of functional groups on LLDPE due to polymer pretreatment that favored fungal attack at the polymer surface. The results provide insight into microbial consortia that spontaneously colonize the surface of plastics in various environments and their capability to attack plastic polymers. Full article
(This article belongs to the Special Issue Study of Biodegradation and Bioremediation)
Show Figures

Graphical abstract

Back to TopTop