Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = mechanofusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13548 KiB  
Review
Synthesis Methods of Si/C Composite Materials for Lithium-Ion Batteries
by Inkyu Park, Hanbyeol Lee and Oh B. Chae
Batteries 2024, 10(11), 381; https://doi.org/10.3390/batteries10110381 - 28 Oct 2024
Cited by 6 | Viewed by 5372
Abstract
Silicon anodes present a high theoretical capacity of 4200 mAh/g, positioning them as strong contenders for improving the performance of lithium-ion batteries. Despite their potential, the practical application of Si anodes is constrained by their significant volumetric expansion (up to 400%) during lithiation/delithiation, [...] Read more.
Silicon anodes present a high theoretical capacity of 4200 mAh/g, positioning them as strong contenders for improving the performance of lithium-ion batteries. Despite their potential, the practical application of Si anodes is constrained by their significant volumetric expansion (up to 400%) during lithiation/delithiation, which leads to mechanical degradation and loss of electrical contact. This issue contributes to poor cycling stability and hinders their commercial viability, and various silicon–carbon composite fabrication methods have been explored to mitigate these challenges. This review covers key techniques, including ball milling, spray drying, pyrolysis, chemical vapor deposition (CVD), and mechanofusion. Each method has unique benefits; ball milling and spray drying are effective for creating homogeneous composites, whereas pyrolysis and CVD offer high-quality coatings that enhance the mechanical stability of silicon anodes. Mechanofusion has been highlighted for its ability to integrate silicon with carbon materials, showing the potential for further optimization. In light of these advancements, future research should focus on refining these techniques to enhance the stability and performance of Si-based anodes. The optimization of the compounding process has the potential to enhance the performance of silicon anodes by addressing the significant volume change and low conductivity, while simultaneously addressing cost-related concerns. Full article
Show Figures

Figure 1

15 pages, 11747 KiB  
Article
Preparation of Silicon Oxide-Carbon Composite with Tailored Electrochemical Properties for Anode in Lithium-Ion Batteries
by Sang Jin Kim, Seung-Jae Ha, Jea Uk Lee, Young-Pyo Jeon and Jin-Yong Hong
C 2023, 9(4), 114; https://doi.org/10.3390/c9040114 - 1 Dec 2023
Cited by 4 | Viewed by 4381
Abstract
For high-efficiency and high-stability lithium ion batteries, a silicon oxide-based carbon composite has been developed as an anode material. To minimize structural defects (cracking and pulverization) due to volumetric contraction/expansion during charge/discharge, silicon oxide (SiOx) is adopted. A pitch—a carbon precursor—is [...] Read more.
For high-efficiency and high-stability lithium ion batteries, a silicon oxide-based carbon composite has been developed as an anode material. To minimize structural defects (cracking and pulverization) due to volumetric contraction/expansion during charge/discharge, silicon oxide (SiOx) is adopted. A pitch—a carbon precursor—is introduced to the surface of SiOx using the mechanofusion method. The introduced pitch precursor can be readily transformed into a carbon layer through stabilization and carbonization processes, resulting in SiOx@C. This carbon layer plays a crucial role in buffering the volume expansion of SiOx during lithiation/delithiation processes, enhancing electrical conductivity, and preventing direct contact with the electrolyte. In order to improve the capacity and cycle stability of SiOx, the electrochemical performances of SiOx@C composites are comparatively analyzed according to the mixing ratio of SiOx and pitch, as well as the loading amount in the anode material. Compared to pristine SiOx, the SiOx@C composite prepared through the optimization of the experimental conditions exhibits approximately 1.6 and 1.8 times higher discharge capacity and initial coulombic efficiency, respectively. In addition, it shows excellent capacity retention and cycle stability, even after more than 300 charge and discharge tests. Full article
(This article belongs to the Special Issue Advanced Carbon Nanomaterials and Hybrids)
Show Figures

Graphical abstract

19 pages, 7127 KiB  
Article
In Situ Metal Organic Framework (ZIF-8) and Mechanofusion-Assisted MWCNT Coating of LiFePO4/C Composite Material for Lithium-Ion Batteries
by Priyatrisha Mathur, Jeng-Ywan Shih, Ying-Jeng James Li, Tai-Feng Hung, Balamurugan Thirumalraj, Sayee Kannan Ramaraj, Rajan Jose, Chelladurai Karuppiah and Chun-Chen Yang
Batteries 2023, 9(3), 182; https://doi.org/10.3390/batteries9030182 - 20 Mar 2023
Cited by 12 | Viewed by 4024
Abstract
LiFePO4 is one of the industrial, scalable cathode materials in lithium-ion battery production, due to its cost-effectiveness and environmental friendliness. However, the electrochemical performance of LiFePO4 in high current rate operation is still limited, due to its poor ionic- and electron-conductive [...] Read more.
LiFePO4 is one of the industrial, scalable cathode materials in lithium-ion battery production, due to its cost-effectiveness and environmental friendliness. However, the electrochemical performance of LiFePO4 in high current rate operation is still limited, due to its poor ionic- and electron-conductive properties. In this study, a zeolitic imidazolate framework (ZIF-8) and multiwalled carbon nanotubes (MWCNT) modified LiFePO4/C (LFP) composite cathode materials were developed and investigated in detail. The ZIF-8 and MWCNT can be used as ionic- and electron-conductive materials, respectively. The surface modification of LFP by ZIF-8 and MWCNT was carried out through in situ wet chemical and mechanical alloy coating. The as-synthesized materials were scrutinized via various characterization methods, such as XRD, SEM, EDX, etc., to determine the material microstructure, morphology, phase, chemical composition, etc. The uniform and stable spherical morphology of LFP composites was obtained when the ZIF-8 coating was processed by the agitator [A], instead of the magnetic stirrer [MS], condition. It was found that the (optimum of) 2 wt.% ZIF-8@LFP [A]/MWCNT composite cathode material exhibited outstanding improvement in high-rate performance; it maintained the discharge capacities of 125 mAh g−1 at 1C, 110 mAh g−1 at 3C, 103 mAh g−1 at 5C, and 91 mAh g−1 at 10C. Better cycling stability with capacity retention of 75.82% at 1C for 100 cycles, as compared to other electrodes prepared in this study, was also revealed. These excellent results were mainly obtained because of the improvement of lithium-ion transport properties, less polarization effect, and interfacial impedance of the LFP composite cathode materials derived from the synergistic effect of both ZIF-8 and MWCNT coating materials. Full article
(This article belongs to the Special Issue High Energy Lithium-Ion Batteries)
Show Figures

Graphical abstract

11 pages, 3052 KiB  
Article
Effect of Mixer Type on Particle Coating by Magnesium Stearate for Friction and Adhesion Modification
by Wei Pin Goh, Ana Montoya Sanavia and Mojtaba Ghadiri
Pharmaceutics 2021, 13(8), 1211; https://doi.org/10.3390/pharmaceutics13081211 - 5 Aug 2021
Cited by 7 | Viewed by 4004
Abstract
Glidants and lubricants are often used to modify interparticle friction and adhesion in order to improve powder characteristics, such as flowability and compactability. Magnesium stearate (MgSt) powder is widely used as a lubricant. Shear straining causes MgSt particles to break, delaminate, and adhere [...] Read more.
Glidants and lubricants are often used to modify interparticle friction and adhesion in order to improve powder characteristics, such as flowability and compactability. Magnesium stearate (MgSt) powder is widely used as a lubricant. Shear straining causes MgSt particles to break, delaminate, and adhere to the surfaces of the host particles. In this work, a comparison is made of the effect of three mixer types on the lubricating role of MgSt particles. The flow behaviour of α-lactose monohydrate, coated with MgSt at different mass percentages of 0.2, 0.5, 1, and 5 is characterised. The mixing and coating process is carried out by dry blending using Turbula, ProCepT, and Mechanofusion. Measures have been taken to operate under equivalent mixing conditions, as reported in the literature. The flow resistance of the coated samples is measured using the FT4 rheometer. The results indicate that the flow characteristics of the processed powders are remarkably similar in the cases of samples treated by Turbula and Mechanofusion, despite extreme conditions of shear strain rate. The least flow resistance of samples is observed in the case of samples treated by the ProCepT mixer. High-velocity collisions of particles round off the sharp corners and edges, making them less resistant to flow. The optimal percentage of magnesium stearate is found to be approximately 1% by weight for all mixer types, as the addition of higher amounts of lubricant does not further improve the flowability of the material. Full article
(This article belongs to the Special Issue Recent Advances in Secondary Processing of Pharmaceutical Powders)
Show Figures

Graphical abstract

14 pages, 3872 KiB  
Article
Mechanical Properties and Bioactivity of Polyetheretherketone/Hydroxyapatite/Carbon Fiber Composite Prepared by the Mechanofusion Process
by In Sung Jeon, Moon Hyun Lee, Han-Hyeong Choi, Sangwoon Lee, Joon Woo Chon, Dong June Chung, Jong Hyuk Park and Jae Young Jho
Polymers 2021, 13(12), 1978; https://doi.org/10.3390/polym13121978 - 16 Jun 2021
Cited by 24 | Viewed by 3487
Abstract
The main obstacles in the melt-processing of hydroxyapatite (HA) and carbon fiber (CF) reinforced polyetheretherketone (PEEK) composite are the high melting temperature of PEEK, poor dispersion of HA nanofillers, and poor processability due to high filler content. In this study, we prepared PEEK/HA/CF [...] Read more.
The main obstacles in the melt-processing of hydroxyapatite (HA) and carbon fiber (CF) reinforced polyetheretherketone (PEEK) composite are the high melting temperature of PEEK, poor dispersion of HA nanofillers, and poor processability due to high filler content. In this study, we prepared PEEK/HA/CF ternary composite using two different non-melt blending methods; suspension blending (SUS) in ethanol and mechanofusion process (MF) in dry condition. We compared the mechanical properties and bioactivity of the composite in a spinal cage application in the orthopedic field. Results showed that the PEEK/HA/CF composite made by the MF method exhibited higher flexural and compressive strengths than the composite prepared by the SUS method due to the enhanced dispersibility of HA nanofiller. On the basis of in vitro cell compatibility and cell attachment tests, PEEK/HA/CF composite by mechanofusion process showed an improvement in in vitro bioactivity and osteo-compatibility. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

15 pages, 3366 KiB  
Article
In-Depth Comparison of Dry Particle Coating Processes Used in DPI Particle Engineering
by Nicholas Bungert, Mirjam Kobler and Regina Scherließ
Pharmaceutics 2021, 13(4), 580; https://doi.org/10.3390/pharmaceutics13040580 - 19 Apr 2021
Cited by 22 | Viewed by 3984
Abstract
High-shear mixer coatings as well as mechanofusion processes are used in the particle-engineering of dry powder inhalation carrier systems. The aim of coating the carrier particle is usually to decrease carrier–drug adhesion. This study comprises the in-depth comparison of two established dry particle [...] Read more.
High-shear mixer coatings as well as mechanofusion processes are used in the particle-engineering of dry powder inhalation carrier systems. The aim of coating the carrier particle is usually to decrease carrier–drug adhesion. This study comprises the in-depth comparison of two established dry particle coating options. Both processes were conducted with and without a model additive (magnesium stearate). In doing so, changes in the behaviour of the processed particles can be traced back to either the process or the additive. It can be stated that the coarse model carrier showed no significant changes when processed without additives. By coating the particles with magnesium stearate, the surface energy decreased significantly. This leads to a significant enhancement of the aerodynamic performance of the respective carrier-based blends. Comparing the engineered carriers with each other, the high-shear mixer coating shows significant benefits, namely, lower drug–carrier adhesion and the higher efficiency of the coating process. Full article
(This article belongs to the Special Issue Advanced Characterization of Inhalation Medicinal Products)
Show Figures

Graphical abstract

Back to TopTop