Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = marine-origin polysaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1613 KiB  
Article
Anticoagulant Potential of Modified Sulfated Exopolysaccharides from Deep-Sea Bacteria: Toward Non-Animal Heparin Alternatives
by Antoine Babuty, Agata Zykwinska, Sergey A. Samsonov, Nathalie Candia, Catherine Veinstein, Martine Pugnière, Thi Hong Giang Ngo, Corinne Sinquin, Javier Muñoz-Garcia, Sylvia Colliec-Jouault and Dominique Heymann
Polysaccharides 2025, 6(2), 54; https://doi.org/10.3390/polysaccharides6020054 - 19 Jun 2025
Cited by 1 | Viewed by 401
Abstract
Heparin, a widely used polysaccharidic anticoagulant of animal origin, is associated with risks of contamination and adverse effects, notably bleeding and thrombocytopenia. These limitations have prompted interest in alternative sulfated polysaccharides with anticoagulant properties and improved safety profiles. This study explored the anticoagulant [...] Read more.
Heparin, a widely used polysaccharidic anticoagulant of animal origin, is associated with risks of contamination and adverse effects, notably bleeding and thrombocytopenia. These limitations have prompted interest in alternative sulfated polysaccharides with anticoagulant properties and improved safety profiles. This study explored the anticoagulant potential of two marine bacterial exopolysaccharides (EPS), infernan and diabolican. It assessed whether chemical modifications (depolymerization, oversulfation) could enhance their anticoagulant properties compared to unfractionated and low molecular weight heparins. Native EPS were depolymerized to generate different molecular weights and then chemically oversulfated to increase negative charge density. Anticoagulant activities were evaluated using clotting and thrombin generation assays (TGA). Molecular docking was performed to model interactions with antithrombin and heparin cofactor II. Only highly sulfated derivatives significantly prolonged activated partial thromboplastin time while showing negligible effect on thrombin time and anti-factor Xa activity. They present different structures, and their binding to antithrombin is not achieved via the classic pentasaccharide motif. In TGA, these derivatives inhibited thrombin formation at higher doses than heparin but induced a marked delay in clot generation. Docking analyses supported their ability to bind serpins, albeit with lower specificity than heparin. Their limited anti-Xa activity and non-animal origin position them as promising anticoagulant candidates. Full article
Show Figures

Figure 1

23 pages, 2756 KiB  
Review
The Origin, Properties, Structure, Catalytic Mechanism, and Applications of Fucoidan-Degrading Enzymes
by Yi Zhao, Limin Ning, Penghui Zhu, Jinju Jiang, Zhong Yao and Benwei Zhu
Mar. Drugs 2025, 23(3), 97; https://doi.org/10.3390/md23030097 - 23 Feb 2025
Cited by 2 | Viewed by 1434
Abstract
Fucoidanase is a class of enzymes capable of hydrolyzing fucoidan, a complex sulfated polysaccharide found mainly in marine brown algae and some marine invertebrates. Fucoidan (FUC) has a wide range of potential health benefits and therapeutic effects, including antitumor, immunomodulatory, antiviral, and hypoglycemic [...] Read more.
Fucoidanase is a class of enzymes capable of hydrolyzing fucoidan, a complex sulfated polysaccharide found mainly in marine brown algae and some marine invertebrates. Fucoidan (FUC) has a wide range of potential health benefits and therapeutic effects, including antitumor, immunomodulatory, antiviral, and hypoglycemic activities. Fucoidanase can hydrolyze high-molecular-weight fucoidan into medium- and low-molecular-weight fucoidan. The low-molecular-weight fucoidan not only has good solubility, low viscosity, and high absorption rate but also retains the original biological activities of fucoidan. Fucoidanase has received much attention in recent years. This paper reviews the taxonomic origin, structure, enzymatic properties, and applications of fucoidanase to provide a reference for the study of fucoidanase. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

30 pages, 2544 KiB  
Review
Abiotic Factors Modulating Metabolite Composition in Brown Algae (Phaeophyceae): Ecological Impacts and Opportunities for Bioprospecting of Bioactive Compounds
by Clara Lopes, Johana Marcela Concha Obando, Thalisia Cunha dos Santos, Diana Negrão Cavalcanti and Valéria Laneuville Teixeira
Mar. Drugs 2024, 22(12), 544; https://doi.org/10.3390/md22120544 - 2 Dec 2024
Cited by 2 | Viewed by 2187
Abstract
Brown algae are vital structural elements and contributors to biodiversity in marine ecosystems. These organisms adapt to various environmental challenges by producing primary and secondary metabolites crucial for their survival, defense, and resilience. Besides their ecological role, these diverse metabolites have potential for [...] Read more.
Brown algae are vital structural elements and contributors to biodiversity in marine ecosystems. These organisms adapt to various environmental challenges by producing primary and secondary metabolites crucial for their survival, defense, and resilience. Besides their ecological role, these diverse metabolites have potential for biotechnological applications in industries including pharmaceuticals, cosmetics, and food. A literature review was conducted encompassing studies from 2014–2024, evaluating the effects of hydrodynamics, temperature, light, nutrients, seasonality, and salinity on the chemical profiles of various Phaeophyceae algae species. Thirty original articles spanning 69 species from the Sargassaceae, Dictyotaceae, Fucaceae, and Scytosiphonaceae families were analyzed and systematically arranged, with a focus on methodologies and key findings. This review furthers ecological discussions on each environmental factor and explores the biotechnological potential of metabolites such as polysaccharides, fatty acids, phenolics, diterpenes, and pigments. The information in this work is beneficial for metabolite bioprospecting and in vitro cultivation models as well as indoor and outdoor cultivation studies. Full article
(This article belongs to the Special Issue Marine Algal Chemical Ecology 2024)
Show Figures

Figure 1

15 pages, 2523 KiB  
Article
Spectral Properties of Marennine-like Pigments Reveal Minor Differences Between Blue Haslea Species and Strains
by Amina Latigui, Boris Jacquette, Jens Dittmer, Jean-François Bardeau, Edouard Boivin, Lucie Beaulieu, Pamela Pasetto and Jean-Luc Mouget
Molecules 2024, 29(22), 5248; https://doi.org/10.3390/molecules29225248 - 6 Nov 2024
Viewed by 1133
Abstract
Marennine is the specific bluish pigment produced by the marine diatom Haslea ostrearia Gaillon (Simonsen), responsible for the greening of oysters in France’s Atlantic coast. For decades, H. ostrearia was considered the only blue diatom and described as such. However, new blue Haslea [...] Read more.
Marennine is the specific bluish pigment produced by the marine diatom Haslea ostrearia Gaillon (Simonsen), responsible for the greening of oysters in France’s Atlantic coast. For decades, H. ostrearia was considered the only blue diatom and described as such. However, new blue Haslea species have been described recently, among which Haslea karadagensis Davidovich, Gastineau, and Mouget (Black Sea, Crimea, Ukraine); Haslea provincialis Gastineau, Hansen, and Mouget (Mediterranean Sea, southern France); Haslea silbo Gastineau, Hansen, and Mouget (West Atlantic Ocean, USA); and one not characterized yet, Haslea sp. nov., isolated in Tenerife (Spain). These species produce marennine-like pigments, for which little information is available yet. The present work aims at studying spectral characteristics of these pigments by UV–visible spectrometry, Raman spectrometry, infrared spectrometry, nuclear magnetic resonance, energy-dispersive X-ray spectroscopy, and cyclic voltammetry, and comparing them to those of marennine produced by H. ostrearia strains originating from the north Atlantic Ocean (western France and Macaronesia), and north Pacific Ocean (southwestern USA). Results show that marennine produced by H. ostrearia strains and marennine-like pigments produced by H. provincialis, H. silbo, and Haslea sp. nov. are quite similar regarding their polysaccharide skeleton, and absorption in the UV–visible, infrared, and Raman regions. The most different marennine-like pigment is produced by H. karadagensis, but all Haslea blue pigments studied so far belong to the same family of organic molecules. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Graphical abstract

9 pages, 263 KiB  
Article
Characterization of Beer Produced with the Addition of Brown Macroalgae Fucus virsoides
by Kristina Habschied, Zdenko Lončarić, Stela Jokić, Krunoslav Aladić, Vinko Krstanović and Krešimir Mastanjević
Appl. Sci. 2024, 14(20), 9594; https://doi.org/10.3390/app14209594 - 21 Oct 2024
Viewed by 1728
Abstract
Marine macroalgae are organisms rich in bioactive compounds such as polysaccharides, polyphenols, and various minerals. Macroalgae are increasingly being added to the human diet precisely because they contain useful compounds that can also be used in the pharmaceutical industry. Previous research describes their [...] Read more.
Marine macroalgae are organisms rich in bioactive compounds such as polysaccharides, polyphenols, and various minerals. Macroalgae are increasingly being added to the human diet precisely because they contain useful compounds that can also be used in the pharmaceutical industry. Previous research describes their addition to meat products, yogurt, bread, and baby food. However, data on the addition of algae to beer have been scarce. The goal of this work was to produce beer with the addition of brown macroalgae (Fucus virsoides) from the Adriatic Sea. In addition, the basic physical–chemical parameters (color, pH, ethanol, extract, and polyphenols) were determined. The most important premise is the transfer of selenium (Se) to beer, since Se is deficient in human food chain. The transfer of different metals, namely, S (sulfur), Mg (magnesium), P (phosphorus), K (potassium), Ca (calcium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), As (arsenic), Se (selenium), Mo (molybdenum), Cd (cadmium), Hg (mercury), and Pb (lead), from algae to beer was determined using inductively coupled plasma–mass spectrometry (ICP−MS). The results, however, were not satisfactory regarding metal transfer. In particular, Se was detected in beer, but other metals such as As, Cd, and Pb were not. Alga addition contributed to extract values, and the original extract reached 14.3 °P in wort with alga addition, as opposed to 12.8 °P in the control sample. Such high extract content, however, resulted in beer with low alcohol content, <4% v/v for both beers. This could be explained by the high levels of unfermentable extract. pH values showed statistical difference between samples, meaning that the addition of algae significantly affected the pH value of beer, reducing acidity by almost 5%. Full article
23 pages, 2764 KiB  
Review
Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy
by Zied Khiari
Mar. Drugs 2024, 22(9), 411; https://doi.org/10.3390/md22090411 - 10 Sep 2024
Cited by 3 | Viewed by 5594
Abstract
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with [...] Read more.
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with the generation and management of wastes, which pose a serious threat to human health and the environment if not properly treated. In the best-case scenario, fishery and aquaculture waste is processed into low-value commodities such as fishmeal and fish oil. However, this renewable organic biomass contains a number of highly valuable bioproducts, including enzymes, bioactive peptides, as well as functional proteins and polysaccharides. Marine-derived enzymes are known to have unique physical, chemical and catalytic characteristics and are reported to be superior to those from plant and animal origins. Moreover, it has been established that enzymes from marine species possess cold-adapted properties, which makes them interesting from technological, economic and sustainability points of view. Therefore, this review centers around enzymes from fishery and aquaculture waste, with a special focus on proteases, lipases, carbohydrases, chitinases and transglutaminases. Additionally, the use of fishery and aquaculture waste as a substrate for the production of industrially relevant microbial enzymes is discussed. The application of emerging technologies (i.e., artificial intelligence and machine learning) in microbial enzyme production is also presented. Full article
(This article belongs to the Special Issue Enzymes from Marine By-Products and Wastes)
Show Figures

Figure 1

16 pages, 2597 KiB  
Review
Sustainable Production of Ulva Oligosaccharides via Enzymatic Hydrolysis: A Review on Ulvan Lyase
by Ailan Huang, Xinming Wu, Fuping Lu and Fufeng Liu
Foods 2024, 13(17), 2820; https://doi.org/10.3390/foods13172820 - 5 Sep 2024
Cited by 7 | Viewed by 2324
Abstract
Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the β [...] Read more.
Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the β-elimination mechanism. The elucidation of the structure, catalytic mechanism, and molecular modification of ulvan lyase will be helpful to obtain high value-added products from marine biomass resources, as well as reduce environmental pollution caused by the eutrophication of green algae. This review summarizes the structure and bioactivity of ulvan, the microbial origin of ulvan lyase, as well as its sequence, three-dimensional structure, and enzymatic mechanism. In addition, the molecular modification of ulvan lyase, prospects and challenges in the application of enzymatic methods to prepare oligosaccharides are also discussed. It provides information for the preparation of bioactive Ulva oligosaccharides through enzymatic hydrolysis, the technological bottlenecks, and possible solutions to address these issues within the enzymatic process. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

16 pages, 5911 KiB  
Article
Formulation and Characterization of Chitosan-Based Mixed-Matrix Scaffold for Tissue Engineering
by Rita Lopes, Paulo M. Gordo, Benilde F. O. Costa and Patrícia Alves
Macromol 2024, 4(2), 253-268; https://doi.org/10.3390/macromol4020014 - 26 Apr 2024
Cited by 3 | Viewed by 1521
Abstract
The use of scaffolds, three-dimensional porous, biodegradable and biocompatible structures, that can be produced from natural polymers, synthetics, ceramics and metals is crucial in the tissue engineering field. Chitosan is a polysaccharide of natural origin, found in the exoskeleton of marine arthropods and [...] Read more.
The use of scaffolds, three-dimensional porous, biodegradable and biocompatible structures, that can be produced from natural polymers, synthetics, ceramics and metals is crucial in the tissue engineering field. Chitosan is a polysaccharide of natural origin, found in the exoskeleton of marine arthropods and in the cell wall of fungi, with enormous popularity in the production of three-dimensional materials for Tissue Engineering, in particular bone repair. This polymer has several advantages in the production of these structures in bone regeneration and repair: biodegradability, biocompatibility, non-toxicity and antimicrobial properties. This study aimed to prepare porous scaffolds, for bone repair of degenerative diseases in the spine with better performance and less secondary effects, based on chitosan and another biopolymer (sodium alginate) with the incorporation of calcium phosphates (hydroxyapatite and β-tricalcium phosphate), for tissue engineering application. The obtained scaffolds were object of a detailed characterization, namely with regard to their porosity through the ethanol method, degradation, positron annihilation spectroscopy (PAS), mechanical properties, scanning electronic microscope (SEM), thermal stability through thermogravimetric analysis (TGA), chemical composition through X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results obtained showed that the different scaffolds presented pores able to support osteoid matrix growth. The crosslinking of scaffolds was also evaluated and resulted in pores with smaller dimensions and higher regularity in the chitosan-sodium alginate polymer without calcium phosphate scaffold. It was also possible to observe the effect of inorganics on mixed-matrix scaffolds, both morphologically and chemically. These scaffolds showed promising results in terms of mechanical and chemical properties, along with promising porosity for tissue regeneration applications. Full article
Show Figures

Graphical abstract

22 pages, 11541 KiB  
Article
Cloning and Characterization of a Novel N-Acetyl-D-galactosamine-4-O-sulfate Sulfatase, SulA1, from a Marine Arthrobacter Strain
by Monica Daugbjerg Christensen, Leila Allahgholi, Javier A. Linares-Pastén, Ólafur Friðjónsson, Hörður Guðmundsson, Varsha Kale, Roya R. R. Sardari, Guðmundur Ó. Hreggviðsson and Eva Nordberg Karlsson
Mar. Drugs 2024, 22(3), 104; https://doi.org/10.3390/md22030104 - 23 Feb 2024
Viewed by 4227
Abstract
Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by [...] Read more.
Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by the gene sulA1 was characterized. The sulA1-gene is located upstream of a chondroitin lyase encoding gene in the genome of the marine Arthrobacter strain (MAT3885). The sulfatase was produced in Escherichia coli. Based on the primary sequence, the enzyme is classified under sulfatase family 1 and the two catalytic residues typical of the sulfatase 1 family—Cys57 (post-translationally modified to formyl glycine for function) and His190—were conserved. The enzyme showed increased activity, but not improved stability, in the presence of Ca2+, and conserved residues for Ca2+ binding were identified (Asp17, Asp18, Asp277, and Asn278) in a structural model of the enzyme. The temperature and pH activity profiles (screened using p-nitrocatechol sulfate) were narrow, with an activity optimum at 40–50 °C and a pH optimum at pH 5.5. The Tm was significantly higher (67 °C) than the activity optimum. Desulfation activity was not detected on polymeric substrates, but was found on GalNAc4S, which is a sulfated monomer in the repeated disaccharide unit (GlcA–GalNAc4S) of, e.g., chondroitin sulfate A. The position of the sulA1 gene upstream of a chondroitin lyase gene and combined with the activity on GalNAc4S suggests that there is an involvement of the enzyme in the chondroitin-degrading cascade reaction, which specifically removes sulfate from monomeric GalNAc4S from chondroitin sulfate degradation products. Full article
Show Figures

Graphical abstract

18 pages, 5116 KiB  
Article
Regulatory Effects Mediated by Enteromorpha prolifera Polysaccharide and Its Zn(II) Complex on Hypoglycemic Activity in High-Sugar High-Fat Diet-Fed Mice
by Liyan Li, Yuanyuan Li and Peng Wang
Foods 2023, 12(15), 2854; https://doi.org/10.3390/foods12152854 - 27 Jul 2023
Cited by 8 | Viewed by 1741
Abstract
In order to investigate and develop functional foods of marine origin with hypoglycemic activity, Enteromorpha prolifera polysaccharide–Zn(II) (EZ) complex was first prepared by marine resourced E. prolifera polysaccharide (EP) and ZnSO4 and their anti-diabetes activities against high-sugar and high-fat-induced diabetic mice were [...] Read more.
In order to investigate and develop functional foods of marine origin with hypoglycemic activity, Enteromorpha prolifera polysaccharide–Zn(II) (EZ) complex was first prepared by marine resourced E. prolifera polysaccharide (EP) and ZnSO4 and their anti-diabetes activities against high-sugar and high-fat-induced diabetic mice were evaluated. The detailed structural characterization of EZ was elucidated by UV-Vis spectroscopy, infrared spectroscopy, and monosaccharide composition determination. The pharmacological research suggests that EZ has a potent hypoglycemic effect on high-sugar and high-fat-induced diabetic mice by inhibiting insulin resistance, improving dyslipidemia, decreasing inflammatory status, repairing pancreas damage, as well as activating the IRS/PI3K/AKT signaling pathway and regulating GLUT2 gene expression. At the same time, microbiota analysis indicates that a high dose of EZ could enhance the abundance of dominant species, such as Staphylococcaceae, Planococcaceae, Muribaculaceae, Aerococcaceae, and Lacrobacillaceae, in intestinal microbiota distribution. Thus, EZ could be considered as a potential candidate for developing an ingredient of functional foods for Zn(II) supplements with hypoglycemic activity. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

20 pages, 2449 KiB  
Review
Marine Microbial Polysaccharides: An Untapped Resource for Biotechnological Applications
by Rajesh Jeewon, Aadil Ahmad Aullybux, Daneshwar Puchooa, Nadeem Nazurally, Abdulwahed Fahad Alrefaei and Ying Zhang
Mar. Drugs 2023, 21(7), 420; https://doi.org/10.3390/md21070420 - 24 Jul 2023
Cited by 12 | Viewed by 4013
Abstract
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely [...] Read more.
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely stemming from the extensive structural and functional diversity displayed by these natural polymers. At the same time, the extreme conditions within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides with previously unreported characteristics. However, despite their potential, only a few microbial polysaccharides have actually reached the market, with even fewer being of marine origin. Through a synthesis of relevant literature, this review seeks to provide an overview of marine microbial polysaccharides, including their unique characteristics. In particular, their suitability for specific biotechnological applications and recent progress made will be highlighted before discussing the challenges that currently limit their study as well as their potential for wider applications. It is expected that this review will help to guide future research in the field of microbial polysaccharides, especially those of marine origin. Full article
(This article belongs to the Special Issue Poly- and Oligosaccharides from Marine Origins)
Show Figures

Graphical abstract

30 pages, 4610 KiB  
Review
Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications
by Fernando G. Torres, Karen N. Gonzales, Omar P. Troncoso and Victoria S. Cañedo
Mar. Drugs 2023, 21(6), 338; https://doi.org/10.3390/md21060338 - 31 May 2023
Cited by 19 | Viewed by 4971
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich [...] Read more.
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs’ structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources. Full article
(This article belongs to the Special Issue Nanoparticles Synthesis with Marine Substances)
Show Figures

Figure 1

20 pages, 11795 KiB  
Article
Fibrin and Marine-Derived Agaroses for the Generation of Human Bioartificial Tissues: An Ex Vivo and In Vivo Study
by Olimpia Ortiz-Arrabal, Ainhoa Irastorza-Lorenzo, Fernando Campos, Miguel Ángel Martín-Piedra, Víctor Carriel, Ingrid Garzón, Paula Ávila-Fernández, María José de Frutos, Emilio Esteban, Javier Fernández, Agustín Janer, Antonio Campos, Jesús Chato-Astrain and Miguel Alaminos
Mar. Drugs 2023, 21(3), 187; https://doi.org/10.3390/md21030187 - 17 Mar 2023
Cited by 9 | Viewed by 2289
Abstract
Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination [...] Read more.
Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination of agarose with fibrin, that was successfully translated to clinical practice. However, in search of novel biomaterials with improved physical and biological properties, we have now generated new fibrin-agarose (FA) biomaterials using 5 different types of agaroses at 4 different concentrations. First, we evaluated the cytotoxic effects and the biomechanical properties of these biomaterials. Then, each bioartificial tissue was grafted in vivo and histological, histochemical and immunohistochemical analyses were performed after 30 days. Ex vivo evaluation showed high biocompatibility and differences in their biomechanical properties. In vivo, FA tissues were biocompatible at the systemic and local levels, and histological analyses showed that biointegration was associated to a pro-regenerative process with M2-type CD206-positive macrophages. These results confirm the biocompatibility of FA biomaterials and support their clinical use for the generation of human tissues by tissue engineering, with the possibility of selecting specific agarose types and concentrations for applications requiring precise biomechanical properties and in vivo reabsorption times. Full article
Show Figures

Graphical abstract

56 pages, 19697 KiB  
Review
Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications
by Simona Petroni, Irene Tagliaro, Carlo Antonini, Massimiliano D’Arienzo, Sara Fernanda Orsini, João F. Mano, Virginia Brancato, João Borges and Laura Cipolla
Mar. Drugs 2023, 21(3), 147; https://doi.org/10.3390/md21030147 - 24 Feb 2023
Cited by 55 | Viewed by 10450
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan [...] Read more.
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered. Full article
Show Figures

Figure 1

35 pages, 1495 KiB  
Review
Immunopotentiating Activity of Fucoidans and Relevance to Cancer Immunotherapy
by Yani Li, Eileen McGowan, Size Chen, Jerran Santos, Haibin Yin and Yiguang Lin
Mar. Drugs 2023, 21(2), 128; https://doi.org/10.3390/md21020128 - 15 Feb 2023
Cited by 20 | Viewed by 6014
Abstract
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans [...] Read more.
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans were first recognized for their role in supporting the immune response and later, in the 1990s, their effects on immune potentiation began to emerge. In recent years, the understanding of the immunomodulatory effects of fucoidan has expanded significantly. The ability of fucoidan(s) to activate CTL-mediated cytotoxicity against cancer cells, strong antitumor property, and robust safety profile make fucoidans desirable for effective cancer immunotherapy. This review focusses on current progress and understanding of the immunopotentiation activity of various fucoidans, emphasizing their relevance to cancer immunotherapy. Here, we will discuss the action of fucoidans in different immune cells and review how fucoidans can be used as adjuvants in conjunction with immunotherapeutic products to improve cancer treatment and clinical outcome. Some key rationales for the possible combination of fucoidans with immunotherapy will be discussed. An update is provided on human clinical studies and available registered cancer clinical trials using fucoidans while highlighting future prospects and challenges. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 2.0)
Show Figures

Graphical abstract

Back to TopTop