Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = manganese borides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5894 KiB  
Article
Exploring the Magnetic and Electrocatalytic Properties of Amorphous MnB Nanoflakes
by Boxiao Fu, Vasileios Tzitzios, Qiancheng Zhang, Brian Rodriguez, Michael Pissas and Maria Veronica Sofianos
Nanomaterials 2023, 13(2), 300; https://doi.org/10.3390/nano13020300 - 11 Jan 2023
Cited by 9 | Viewed by 3210
Abstract
Two-dimensional (2D) metal borides are a class of ceramic materials with diverse structural and topological properties. These diverse material properties of metal borides are what forms the basis of their interdisciplinarity and their applicability in various research fields. In this study, we highlight [...] Read more.
Two-dimensional (2D) metal borides are a class of ceramic materials with diverse structural and topological properties. These diverse material properties of metal borides are what forms the basis of their interdisciplinarity and their applicability in various research fields. In this study, we highlight which fundamental and practical parameters need to be taken into consideration when designing nanomaterials for specific applications. A simple one-pot chemical reduction method was applied for the synthesis of manganese mono-boride nanoflakes at room temperature. How the specific surface area and boron-content of the as-synthesized manganese mono-boride nanoflakes influence their magnetic and electrocatalytic properties is reported. The sample with the highest specific surface area and boron content demonstrated the best magnetic and electrocatalytic properties in the HER. Whereas the sample with the lowest specific surface area and boron content exhibited the best electric conductivity and electrocatalytic properties in the OER. Full article
Show Figures

Figure 1

16 pages, 5059 KiB  
Article
Characterization and Boron Diffusion Kinetics on the Surface-Hardened Layers of Royalloy Steel
by Peter Orihel, Marián Drienovský, Zuzana Gabalcová, Peter Jurči and Mourad Keddam
Coatings 2023, 13(1), 113; https://doi.org/10.3390/coatings13010113 - 7 Jan 2023
Cited by 12 | Viewed by 2012
Abstract
The Royalloy steel was boronized at 1173, 1223, 1248, 1273 or 1323 K for 1, 3, 5, 7 or 10 h using a Durborid powder mixture. The boronized samples were analyzed by scanning electron microscopy, X-ray diffraction and Vickers microhardness testing. The kinetic [...] Read more.
The Royalloy steel was boronized at 1173, 1223, 1248, 1273 or 1323 K for 1, 3, 5, 7 or 10 h using a Durborid powder mixture. The boronized samples were analyzed by scanning electron microscopy, X-ray diffraction and Vickers microhardness testing. The kinetic activity of boronized layers growth obeys the parabolic law, and the maximum thickness was 182 ± 10 µm. The thickness of FeB makes up to 40% of the total layer thickness. The obtained layers have two phases, which were composed of FeB and Fe2B phases, except for the sample boronized at 1173 K for 1 h which had an Fe2B layer only. The microhardness of the Fe2B phase had a range of 1370–1703 HV0.1, and that of the FeB phase was within 1727–2231 HV0.1. During the boronizing process, the chromium created extra particles with the highest amount of chromium in the transient region. The highest amount of silicon was observed at the boride layer/substrate interface. The amount of manganese was slightly lower in the boride layers compared to the amount in the substrate. Finally, the integral diffusion model was applied to determine the boron activation energies in the FeB and Fe2B layers, and this was followed by a comparison with the literature data. Full article
Show Figures

Figure 1

19 pages, 6356 KiB  
Article
Corrosion Properties of Boron- and Manganese-Alloyed Stainless Steels as a Material for the Bipolar Plates of PEM Fuel Cells
by Tomáš Lovaši, Vojtěch Pečinka, Jakub Ludvík, Jiří Kubásek, Filip Průša and Milan Kouřil
Materials 2022, 15(19), 6557; https://doi.org/10.3390/ma15196557 - 21 Sep 2022
Cited by 2 | Viewed by 1886
Abstract
Stainless steels are materials that could be used for constructing not only the bearing parts of fuel cells but also the functional ones, particularly the bipolar plates. The advantage of stainless steel is its valuable electrical and thermal conductivity, reasonably low cost, excellent [...] Read more.
Stainless steels are materials that could be used for constructing not only the bearing parts of fuel cells but also the functional ones, particularly the bipolar plates. The advantage of stainless steel is its valuable electrical and thermal conductivity, reasonably low cost, excellent mechanical properties, and good formability. Paradoxically, the self-protection effect resulting from passivation turns into the main disadvantage, which is unacceptable interfacial contact resistance. The aim of this study was to test a number of possible stainless steels in a simulated fuel cell environment, especially those alloyed with boron and manganese, which were found to improve the contact resistance properties of stainless steels. The primary focus of the study is to determine the corrosion resistance of the individual materials tested. Electrochemical tests and contact resistance measurements were performed following the DOE requirements. Manganese-alloyed LDX stainless steel achieved the best results in the electrochemical tests; the worst were achieved by boron-containing steels. Boron-containing stainless steels suffered from localized corrosion resulting from chromium-rich boride formation. All steels tested exceeded the DOE limit in the contact resistance measurement, with 316L reaching the lowest values. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

21 pages, 9929 KiB  
Article
Wear Behavior of Borided Cold-Rolled High Manganese Steel
by Fatih Hayat and Cihangir Tevfik Sezgin
Coatings 2021, 11(10), 1207; https://doi.org/10.3390/coatings11101207 - 1 Oct 2021
Cited by 15 | Viewed by 2777
Abstract
In this study, a novel high-manganese steel (HMS) was borided at 850, 900 and 950 °C for 2, 4, and 6 h by the pack boriding process. Contrary to previous literature, borided HMS uncommonly exhibited saw-tooth morphology like low alloy steels, and manganese [...] Read more.
In this study, a novel high-manganese steel (HMS) was borided at 850, 900 and 950 °C for 2, 4, and 6 h by the pack boriding process. Contrary to previous literature, borided HMS uncommonly exhibited saw-tooth morphology like low alloy steels, and manganese enhanced the boron diffusion. Another striking analysis is that the “egg-shell effect” did not occur. The present study demonstrated the silicon-rich zone for the first time in the literature by EDX mapping. Moreover, the formation mechanism of silicon-rich zones was explained and termed as “compact transfer of silicones (CTS)”. XRD analysis showed the existence of FeB, Fe2B, MnB and SiC phases. The boriding time and temperature increased the thickness of the boride layer from 31.41 μm to 117.65 µm. The hardness of the borided layer ranged from 1120 to 1915 HV0.05. The activation energy of borided HMS was found to be a very low result compared to high alloy steel investigated in the literature. The Daimler-Benz Rockwell-C adhesion test showed that adhesions of borided HMS surfaces are sufficient. The dry sliding wear tests showed that boriding treatment increased the wear resistance of untreated HMS by 5 times. The present study revealed that the boriding process extended the service life of HMS components. Full article
(This article belongs to the Special Issue Solid-State Processing of Materials)
Show Figures

Figure 1

20 pages, 7093 KiB  
Article
The Influence of the Third Element on Nano-Mechanical Properties of Iron Borides FeB and Fe2B Formed in Fe-B-X (X = C, Cr, Mn, V, W, Mn + V) Alloys
by Ivana Kirkovska, Viera Homolová, Ivan Petryshynets and Tamás Csanádi
Materials 2020, 13(18), 4155; https://doi.org/10.3390/ma13184155 - 18 Sep 2020
Cited by 5 | Viewed by 2861
Abstract
In this study, the influence of alloying elements on the mechanical properties of iron borides FeB and Fe2B formed in Fe-B-X (X = C, Cr, Mn, V, W, Mn + V) alloys were evaluated using instrumented indentation measurement. The microstructural characterization [...] Read more.
In this study, the influence of alloying elements on the mechanical properties of iron borides FeB and Fe2B formed in Fe-B-X (X = C, Cr, Mn, V, W, Mn + V) alloys were evaluated using instrumented indentation measurement. The microstructural characterization of the alloys was performed by means of X-ray diffraction and scanning electron microscope equipped with an energy dispersive X-ray analyzer. The fraction of the phases present in the alloys was determined either by the lever rule or by image analysis. The hardest and stiffest FeB formed in Fe-B-X (X = C, Cr, Mn) alloys was observed in the Fe-B-Cr alloys, where indentation hardness of HIT = 26.9 ± 1.4 GPa and indentation modulus of EIT = 486 ± 22 GPa were determined. The highest hardness of Fe2B was determined in the presence of tungsten as an alloying element, HIT = 20.8 ± 0.9 GPa. The lowest indentation hardness is measured in manganese alloyed FeB and Fe2B. In both FeB and Fe2B, an indentation size effect was observed, showing a decrease of hardness with increasing indentation depth. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop