Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mainshock–aftershock (MSAS) sequences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3698 KiB  
Article
Aftershock Effect on Seismic Behavior of 3D Steel Moment-Resisting Frames
by Arezou Behrouz and Kadir Ozakgul
Buildings 2025, 15(15), 2614; https://doi.org/10.3390/buildings15152614 - 23 Jul 2025
Viewed by 265
Abstract
Aftershocks are inevitable phenomena following a mainshock, especially after a major earthquake. However, the cumulative damage caused by aftershocks and its impact on structural performance evaluation has only recently received significant attention. This study explores the effects of mainshock–aftershock (MS–AS) sequences, including multiple [...] Read more.
Aftershocks are inevitable phenomena following a mainshock, especially after a major earthquake. However, the cumulative damage caused by aftershocks and its impact on structural performance evaluation has only recently received significant attention. This study explores the effects of mainshock–aftershock (MS–AS) sequences, including multiple consecutive aftershocks, acting on 3D steel moment-resisting frame structures. Following nonlinear time history analysis, several fundamental variables such as residual interstory drift, maximum displacement, plastic hinge formation, and base shear are evaluated to examine cumulative damage. In this context, the findings depicted in terms of aftershocks play a significant role in exacerbating plastic deformations and damage accumulation in steel moment frames. Subsequently, to mitigate cumulative damage on steel moment frames, retrofitting strategies were implemented. Retrofitting strategies effectively reduce cumulative damage and improve seismic resilience under multiple earthquake events. This research highlights the limitations of single-event seismic assessments and the need to incorporate sequential earthquake effects in design and retrofit practices. Furthermore, it provides new insights into mitigating further damage by retrofitting existing structures under multiple earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5277 KiB  
Article
The Generation of the Target Aftershock Spectrum Based on the Conditional Mean Spectrum of Aftershocks
by Ruiguang Zhu, Bohan Du, Yekai Yang and Dagang Lu
Buildings 2023, 13(10), 2660; https://doi.org/10.3390/buildings13102660 - 22 Oct 2023
Cited by 1 | Viewed by 1723
Abstract
Numerous studies have examined the responses of various structures to the mainshock–aftershock (MS–AS) ground motion, and the MS–AS ground motions are very important as the input. Therefore, in the absence of aftershock information, it is particularly critical to construct a reasonable MS–AS seismic [...] Read more.
Numerous studies have examined the responses of various structures to the mainshock–aftershock (MS–AS) ground motion, and the MS–AS ground motions are very important as the input. Therefore, in the absence of aftershock information, it is particularly critical to construct a reasonable MS–AS seismic sequence. This paper aims to provide a new reasonable method for generating the target aftershock response spectrum, which can be used to select or artificially simulate aftershock ground motion, given the seismic information of the main shock. Firstly, the magnitude, fault size, and location of the aftershock are determined. Then, other parameters required for the aftershock ground motion prediction equation (GMPE) are calculated. Subsequently, the correlation of the spectral shape to the MS–AS ground motion is used to modify the response spectrum predicted using the GMPE to obtain the conditional mean spectrum of aftershocks (CMSA). Finally, the relative errors of the predicted spectrum via the ASK14 model and CMSA are compared for four different assumptions. The results show that the simulated aftershock parameters and the actual ones accord well, and the relative errors of the CMSA can be controlled within 20%. Meanwhile, the discrete property of the target aftershock response spectrum is closer to the real recorded response spectrum. Full article
Show Figures

Figure 1

26 pages, 10770 KiB  
Article
Effects of Aftershocks on the Seismic Performances of Reinforced Concrete Eccentric Frame Structures
by Pengyu Sun, Weiping Wen and Siwei Zhang
Appl. Sci. 2023, 13(19), 10767; https://doi.org/10.3390/app131910767 - 27 Sep 2023
Cited by 2 | Viewed by 1786
Abstract
Strong aftershocks have the potential to cause accumulated damage in structures, a feature which has been reported in post-earthquake reconnaissance studies, particularly for eccentric or irregular structures. This study aims to investigate the seismic behaviors of eccentric RC structural models under mainshock–aftershock (MSAS) [...] Read more.
Strong aftershocks have the potential to cause accumulated damage in structures, a feature which has been reported in post-earthquake reconnaissance studies, particularly for eccentric or irregular structures. This study aims to investigate the seismic behaviors of eccentric RC structural models under mainshock–aftershock (MSAS) sequences. In this study, three-dimensional structural models with eccentricities of 5%, 10%, 15%, 20%, 25%, and 30%, and an eccentricity of 0 (symmetric structural model) are developed by changing the positions of the centers of the structural mass. A static pushover analysis and a nonlinear time history analysis are conducted on the structural models with different eccentricities considering unidirectional and bidirectional earthquake loading (including mainshock ground motion and MSAS sequences). The amplitude of the aftershock ground motion is scaled according to the structural damage levels calibrated with the inter-story drift ratio (IDR). Furthermore, the differences in seismic responses between the unidirectional and bidirectional eccentric structures are discussed. The results show that the peak displacements of the unidirectional eccentric structures under MSAS sequences are nearly 1.4 times higher than those under mainshock ground motions. The structural seismic responses under unidirectional earthquake loading are more sensitive to the intensity of aftershock ground motions than those under bidirectional earthquake loading. Compared with unidirectional eccentric structures, bidirectional eccentric structures are more sensitive to the intensity of aftershock ground motions and have larger torsional angles and more complex displacement trends. The maximum displacement and the maximum IDR of bidirectional eccentric structures under MSAS sequences can reach 1.5 times and 1.4 times of those under mainshock ground motions, respectively. Full article
Show Figures

Figure 1

21 pages, 7341 KiB  
Article
Identifying Optimal Intensity Measures for Predicting Damage Potential of Mainshock–Aftershock Sequences
by Zhou Zhou, Xiaohui Yu and Dagang Lu
Appl. Sci. 2020, 10(19), 6795; https://doi.org/10.3390/app10196795 - 28 Sep 2020
Cited by 17 | Viewed by 2754
Abstract
Large earthquakes are followed by a sequence of aftershocks. Therefore, a reasonable prediction of damage potential caused by mainshock (MS)–aftershock (AS) sequences is important in seismic risk assessment. This paper comprehensively examines the interdependence between earthquake intensity measures (IMs) and structural damage under [...] Read more.
Large earthquakes are followed by a sequence of aftershocks. Therefore, a reasonable prediction of damage potential caused by mainshock (MS)–aftershock (AS) sequences is important in seismic risk assessment. This paper comprehensively examines the interdependence between earthquake intensity measures (IMs) and structural damage under MS–AS sequences to identify optimal IMs for predicting the MS–AS damage potential. To do this, four categories of IMs are considered to represent the characteristics of a specific MS–AS sequence, including mainshock IMs, aftershock IMs (i.e., IMMS and IMAS, respectively), and two newly proposed IMs through taking an entire MS–AS sequence as one nominal ground motion (i.e., IM1MS–AS), or determining the ratio of IMAS to IMMS (i.e., IM2MS–AS), respectively. The single-degree-of-freedom systems with varying hysteretic behaviors are subjected to 662 real MS–AS sequences to estimate structural damage in terms the Park–Ang damage index. The intensities in terms of IMMS, IMAS, and IM1MS–AS are correlated with the accumulative damage of structures (i.e., DI1MS–AS). Moreover, the ratio (i.e., DI2MS–AS) of the AS-induced damage increment to the MS-induced damage is related to IM2MS–AS. The results show that IM2MS–AS exhibits significantly better performance than IMMS, IMAS, and IM1MS–AS for predicting the MS–AS damage potential, due to its high interdependence with DI2MS–AS. Among the considered 22 classic IMs, Arias intensity, root-square velocity, and peak ground displacement are respectively the optimal acceleration-, velocity-, and displacement-related IMs to formulate IM2MS–AS. Finally, two empirical equations are proposed to predict the correlations between IM2MS–AS and DI2MS–AS in the entire structural period range. Full article
(This article belongs to the Special Issue Advances on Structural Engineering, Volume II)
Show Figures

Figure 1

Back to TopTop